Ads
related to: examples of word problems with compatible numbers pdfeducation.com has been visited by 100K+ users in the past month
- Interactive Stories
Enchant young learners with
animated, educational stories.
- Education.com Blog
See what's new on Education.com,
explore classroom ideas, & more.
- Digital Games
Turn study time into an adventure
with fun challenges & characters.
- Printable Workbooks
Download & print 300+ workbooks
written & reviewed by teachers.
- Interactive Stories
kutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
The word problem for an algebra is then to determine, given two expressions (words) involving the generators and operations, whether they represent the same element of the algebra modulo the identities. The word problems for groups and semigroups can be phrased as word problems for algebras. [1]
Word problem from the Līlāvatī (12th century), with its English translation and solution. In science education, a word problem is a mathematical exercise (such as in a textbook, worksheet, or exam) where significant background information on the problem is presented in ordinary language rather than in mathematical notation.
The word problem is a well-known example of an undecidable problem. If A {\displaystyle A} is a finite set of generators for G {\displaystyle G} , then the word problem is the membership problem for the formal language of all words in A {\displaystyle A} and a formal set of inverses that map to the identity under the natural map from the free ...
An example of a counting problem whose solution can be given in terms of the Narayana numbers (,), is the number of words containing pairs of parentheses, which are correctly matched (known as Dyck words) and which contain distinct nestings.
Many, if not most, undecidable problems in mathematics can be posed as word problems: determining when two distinct strings of symbols (encoding some mathematical concept or object) represent the same object or not. For undecidability in axiomatic mathematics, see List of statements undecidable in ZFC.
A number that is not part of any friendly pair is called solitary. The abundancy index of n is the rational number σ(n) / n, in which σ denotes the sum of divisors function. A number n is a friendly number if there exists m ≠ n such that σ(m) / m = σ(n) / n. Abundancy is not the same as abundance, which is defined as σ(n) − 2n.
Ads
related to: examples of word problems with compatible numbers pdfeducation.com has been visited by 100K+ users in the past month
kutasoftware.com has been visited by 10K+ users in the past month