Search results
Results from the WOW.Com Content Network
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]
2. Orthogonal subspace in the dual space: If W is a linear subspace (or a submodule) of a vector space (or of a module) V, then may denote the orthogonal subspace of W, that is, the set of all linear forms that map W to zero. 3. For inline uses of the symbol, see ⊥.
Robert Wayne Thomason (5 November 1952 – 5 November 1995) [1] was an American mathematician who worked on algebraic K-theory.His results include a proof that all infinite loop space machines are in some sense equivalent, and progress on the Quillen–Lichtenbaum conjecture.
In mathematics, the infinite series 1 / 2 + 1 / 4 + 1 / 8 + 1 / 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1.
Mathematical visualization is used throughout mathematics, particularly in the fields of geometry and analysis. Notable examples include plane curves , space curves , polyhedra , ordinary differential equations , partial differential equations (particularly numerical solutions, as in fluid dynamics or minimal surfaces such as soap films ...
In mathematics, the infinite series 1 / 4 + 1 / 16 + 1 / 64 + 1 / 256 + ⋯ is an example of one of the first infinite series to be summed in the history of mathematics; it was used by Archimedes circa 250–200 BC. [1]
(in which, after five initial +1 terms, the terms alternate in pairs of +1 and −1 terms – the infinitude of both +1s and −1s allows any finite number of 1s or −1s to be prepended, by Hilbert's paradox of the Grand Hotel) is a permutation of Grandi's series in which each value in the rearranged series corresponds to a value that is at ...
Rigor is a cornerstone quality of mathematics, and can play an important role in preventing mathematics from degenerating into fallacies. well-behaved An object is well-behaved (in contrast with being Pathological ) if it satisfies certain prevailing regularity properties, or if it conforms to mathematical intuition (even though intuition can ...