Search results
Results from the WOW.Com Content Network
quantum mechanics, matrix mechanics, Hamiltonian (quantum mechanics) particle in a box; particle in a ring; particle in a spherically symmetric potential; quantum harmonic oscillator; hydrogen atom; ring wave guide; particle in a one-dimensional lattice (periodic potential) Fock symmetry in theory of hydrogen
Modern philosophers reject quantum logic as a basis for reasoning, because it lacks a material conditional; a common alternative is the system of linear logic, of which quantum logic is a fragment. Mathematically, quantum logic is formulated by weakening the distributive law for a Boolean algebra, resulting in an orthocomplemented lattice.
The phenomenology of quantum physics arose roughly between 1895 and 1915, and for the 10 to 15 years before the development of quantum mechanics (around 1925) physicists continued to think of quantum theory within the confines of what is now called classical physics, and in particular within the same mathematical structures.
Quantum Trajectory Theory (QTT) is a formulation of quantum mechanics used for simulating open quantum systems, quantum dissipation and single quantum systems. [1] It was developed by Howard Carmichael in the early 1990s around the same time as the similar formulation, known as the quantum jump method or Monte Carlo wave function (MCWF) method, developed by Dalibard, Castin and Mølmer. [2]
Dalton (named after John Dalton) is an ab initio quantum chemistry computer program suite, consisting of the Dalton and LSDalton programs. [2] The Dalton suite is capable of calculating various molecular properties using the Hartree–Fock, MP2, MCSCF and coupled cluster theories.
The subject of counterfactual definiteness receives attention in the study of quantum mechanics because it is argued that, when challenged by the findings of quantum mechanics, classical physics must give up its claim to one of three assumptions: locality (no "spooky action at a distance"), no-conspiracy (called also "asymmetry of time"), [4] [5] or counterfactual definiteness (or "non ...
A function F(x) is an h-antiderivative of f(x) if D h F(x) = f(x).The h-integral is denoted by ().If a and b differ by an integer multiple of h then the definite integral () is given by a Riemann sum of f(x) on the interval [a, b], partitioned into sub-intervals of equal width h.
As it turns out, the only pairs of these properties that lead to self-consistent, nontrivial solutions are 2 & 3, and possibly 1 & 3 or 1 & 4. Accepting properties 1 & 2, along with a weaker condition that 3 be true only asymptotically in the limit ħ →0 (see Moyal bracket ), leads to deformation quantization , and some extraneous information ...