enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravity - Wikipedia

    en.wikipedia.org/wiki/Gravity

    In physics, gravity (from Latin gravitas 'weight' [1]) is a fundamental interaction primarily observed as a mutual attraction between all things that have mass.Gravity is, by far, the weakest of the four fundamental interactions, approximately 10 38 times weaker than the strong interaction, 10 36 times weaker than the electromagnetic force, and 10 29 times weaker than the weak interaction.

  3. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    Before Newton's law of gravity, there were many theories explaining gravity. Philoshophers made observations about things falling down − and developed theories why they do – as early as Aristotle who thought that rocks fall to the ground because seeking the ground was an essential part of their nature. [6]

  4. Introduction to general relativity - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_general...

    Such comparatively simple universes can be described by simple solutions of Einstein's equations. The current cosmological models of the universe are obtained by combining these simple solutions to general relativity with theories describing the properties of the universe's matter content, namely thermodynamics, nuclear-and particle physics.

  5. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    In its original concept, gravity was a force between point masses. Following Isaac Newton, Pierre-Simon Laplace attempted to model gravity as some kind of radiation field or fluid, [citation needed] and since the 19th century, explanations for gravity in classical mechanics have usually been taught in terms of a field model, rather than a point ...

  6. Gravitational field - Wikipedia

    en.wikipedia.org/wiki/Gravitational_field

    In classical mechanics, a gravitational field is a physical quantity. [5] A gravitational field can be defined using Newton's law of universal gravitation.Determined in this way, the gravitational field g around a single particle of mass M is a vector field consisting at every point of a vector pointing directly towards the particle.

  7. Gravimetry - Wikipedia

    en.wikipedia.org/wiki/Gravimetry

    Gravity is usually measured in units of acceleration.In the SI system of units, the standard unit of acceleration is metres per second squared (m/s 2).Other units include the cgs gal (sometimes known as a galileo, in either case with symbol Gal), which equals 1 centimetre per second squared, and the g (g n), equal to 9.80665 m/s 2.

  8. Action at a distance - Wikipedia

    en.wikipedia.org/wiki/Action_at_a_distance

    Action at a distance is the concept in physics that an object's motion can be affected by another object without the two being in physical contact; that is, it is the concept of the non-local interaction of objects that are separated in space.

  9. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    The gravitational constant G is a key quantity in Newton's law of universal gravitation.. The gravitational constant is an empirical physical constant involved in the calculation of gravitational effects in Sir Isaac Newton's law of universal gravitation and in Albert Einstein's theory of general relativity.