Search results
Results from the WOW.Com Content Network
In statistics, dispersion (also called variability, scatter, or spread) is the extent to which a distribution is stretched or squeezed. [1] Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered.
In probability theory and statistics, the index of dispersion, [1] dispersion index, coefficient of dispersion, relative variance, or variance-to-mean ratio (VMR), like the coefficient of variation, is a normalized measure of the dispersion of a probability distribution: it is a measure used to quantify whether a set of observed occurrences are clustered or dispersed compared to a standard ...
Various measures of statistical dispersion satisfy these. In order to make the statistic a consistent estimator for the scale parameter, one must in general multiply the statistic by a constant scale factor. This scale factor is defined as the theoretical value of the value obtained by dividing the required scale parameter by the asymptotic ...
A dispersion fan diagram (left) in comparison with a box plot. A fan chart is made of a group of dispersion fan diagrams, which may be positioned according to two categorising dimensions. A dispersion fan diagram is a circular diagram which reports the same information about a dispersion as a box plot: namely median, quartiles, and two extreme ...
While a simple measure, it is notable in that some texts and guides suggest or imply that the dispersion of nominal measurements cannot be ascertained. It is defined for instance by ( Freeman 1965 ). Just as with the range or standard deviation , the larger the variation ratio, the more differentiated or dispersed the data are; and the smaller ...
L-estimators can also be used as statistics in their own right – for example, the median is a measure of location, and the IQR is a measure of dispersion. In these cases, the sample statistics can act as estimators of their own expected value; for example, the sample median is an estimator of the population median.
The Poisson distribution has one free parameter and does not allow for the variance to be adjusted independently of the mean. The choice of a distribution from the Poisson family is often dictated by the nature of the empirical data. For example, Poisson regression analysis is commonly used to model count data. If overdispersion is a feature ...
This distribution for a = 0, b = 1 and c = 0.5—the mode (i.e., the peak) is exactly in the middle of the interval—corresponds to the distribution of the mean of two standard uniform variables, that is, the distribution of X = (X 1 + X 2) / 2, where X 1, X 2 are two independent random variables with standard uniform distribution in [0, 1]. [1]