Search results
Results from the WOW.Com Content Network
In mathematics, the method of undetermined coefficients is an approach to finding a particular solution to certain nonhomogeneous ordinary differential equations and recurrence relations.
In mathematics, the annihilator method is a procedure used to find a particular solution to certain types of non-homogeneous ordinary differential equations (ODEs). [1] It is similar to the method of undetermined coefficients, but instead of guessing the particular solution in the method of undetermined coefficients, the particular solution is determined systematically in this technique.
In mathematics, variation of parameters, also known as variation of constants, is a general method to solve inhomogeneous linear ordinary differential equations.. For first-order inhomogeneous linear differential equations it is usually possible to find solutions via integrating factors or undetermined coefficients with considerably less effort, although those methods leverage heuristics that ...
The undetermined coefficients method is a method of appropriately selecting a solution type according to the form of the non-homogeneous term and determining the undetermined constant, so that it satisfies the non-homogeneous equation. [4] On the other hand, the ERF method obtains a special solution based on differential operator. [2]
— Method of undetermined coefficients#Description of the method Is there a more compact way of expressing that second hypothesis? For clarity, the current spelled-out version could be given too as an explanation of a more compact term for such a function, but if there is a more compact term for that mouthful I, as a reader, would appreciate ...
It is inconsistent if and only if 0 = 1 is a linear combination (with polynomial coefficients) of the equations (this is Hilbert's Nullstellensatz). If an underdetermined system of t equations in n variables ( t < n ) has solutions, then the set of all complex solutions is an algebraic set of dimension at least n - t .
An ODE problem can be expanded with the auxiliary variables which make the power series method trivial for an equivalent, larger system. Expanding the ODE problem with auxiliary variables produces the same coefficients (since the power series for a function is unique) at the cost of also calculating the coefficients of auxiliary equations.
For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).