Search results
Results from the WOW.Com Content Network
Eukaryotic flagella. 1–axoneme, 2–cell membrane, 3–IFT (IntraFlagellar Transport), 4–Basal body, 5–Cross section of flagella, 6–Triplets of microtubules of basal body Cross section of an axoneme Longitudinal section through the flagella area in Chlamydomonas reinhardtii. In the cell apex is the basal body that is the anchoring site ...
The evolution of flagella is of great interest to biologists because the three known varieties of flagella – (eukaryotic, bacterial, and archaeal) each represent a sophisticated cellular structure that requires the interaction of many different systems.
Flagella in eukaryotes are supported by microtubules in a characteristic arrangement, with nine fused pairs surrounding two central singlets. These arise from a basal body. In some flagellates, flagella direct food into a cytostome or mouth, where food is ingested. Flagella role in classifying eukaryotes.
Movement of the flagellum draws water through the collar, and bacteria and detritus are captured by the microvilli and ingested. [12] Water currents generated by the flagellum also push free-swimming cells along, as in animal sperm. In contrast, most other flagellates are pulled by their flagella. [citation needed]
Examples range from the propulsion of single cells such as the swimming of spermatozoa to the transport of fluid along a stationary layer of cells such as in a respiratory tract. Though eukaryotic flagella and motile cilia are ultrastructurally identical, the beating pattern of the two organelles can be different.
Schematic of the eukaryotic flagellum. 1-axoneme, 2-cell membrane, 3-IFT (Intraflagellar transport), 4-Basal body, 5-Cross section of flagellum, 6-Triplets of microtubules of basal body. Longitudinal section through the flagella area in Chlamydomonas reinhardtii. In the cell apex is the basal body that is the anchoring site for a flagellum.
Eukaryotic flagella found on sperm cells and many protozoans have a similar structure to motile cilia that enables swimming through liquids; they are longer than cilia and have a different undulating motion. [3] [4] There are two major classes of cilia: motile and non-motile cilia, each with two subtypes, giving four types in all. [5]
The opisthokonts (from Ancient Greek ὀπίσθιος (opísthios) ' rear, posterior ' and κοντός (kontós) ' pole, i.e. flagellum ') are a broad group of eukaryotes, including both the animal and fungus kingdoms. [5] The opisthokonts, previously called the "Fungi/Metazoa group", [6] are generally recognized as a clade.