enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    The soft-margin support vector machine described above is an example of an empirical risk minimization (ERM) algorithm for the hinge loss. Seen this way, support vector machines belong to a natural class of algorithms for statistical inference, and many of its unique features are due to the behavior of the hinge loss.

  3. Regularization perspectives on support vector machines

    en.wikipedia.org/wiki/Regularization...

    The training and test-set errors can be measured without bias and in a fair way using accuracy, precision, Auc-Roc, precision-recall, and other metrics. Regularization perspectives on support-vector machines interpret SVM as a special case of Tikhonov regularization, specifically Tikhonov regularization with the hinge loss for a loss function.

  4. Least-squares support vector machine - Wikipedia

    en.wikipedia.org/wiki/Least-squares_support...

    Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis.

  5. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Kernel methods owe their name to the use of kernel functions, which enable them to operate in a high-dimensional, implicit feature space without ever computing the coordinates of the data in that space, but rather by simply computing the inner products between the images of all pairs of data in the feature space. This operation is often ...

  6. Structured support vector machine - Wikipedia

    en.wikipedia.org/wiki/Structured_support_vector...

    The structured support-vector machine is a machine learning algorithm that generalizes the Support-Vector Machine (SVM) classifier. Whereas the SVM classifier supports binary classification , multiclass classification and regression , the structured SVM allows training of a classifier for general structured output labels .

  7. Ranking SVM - Wikipedia

    en.wikipedia.org/wiki/Ranking_SVM

    In machine learning, a ranking SVM is a variant of the support vector machine algorithm, which is used to solve certain ranking problems (via learning to rank). The ranking SVM algorithm was published by Thorsten Joachims in 2002. [1] The original purpose of the algorithm was to improve the performance of an internet search engine.

  8. List of statistical software - Wikipedia

    en.wikipedia.org/wiki/List_of_statistical_software

    SuperCROSS – comprehensive statistics package with ad-hoc, cross tabulation analysis; Systat – general statistics package; The Unscrambler – free-to-try commercial multivariate analysis software for Windows; Unistat – general statistics package that can also work as Excel add-in; WarpPLS – statistics package used in structural ...

  9. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    Finally, the test data set is a data set used to provide an unbiased evaluation of a final model fit on the training data set. [5] If the data in the test data set has never been used in training (for example in cross-validation), the test data set is also called a holdout data set. The term "validation set" is sometimes used instead of "test ...