Search results
Results from the WOW.Com Content Network
In thermodynamics and chemical engineering, the vapor–liquid equilibrium (VLE) describes the distribution of a chemical species between the vapor phase and a liquid phase. The concentration of a vapor in contact with its liquid, especially at equilibrium , is often expressed in terms of vapor pressure , which will be a partial pressure (a ...
DePriester Charts provide an efficient method to find the vapor-liquid equilibrium ratios for different substances at different conditions of pressure and temperature. The original chart was put forth by C.L. DePriester in an article in Chemical Engineering Progress in 1953.
The original reason for starting a vapor–liquid phase equilibria data collection was the development [2] of the group contribution method UNIFAC which allows to estimate vapor pressures of mixtures. The DDB has since been extended to many other properties and has increased dramatically in size also because of intensive (German) government aid.
By adding a correction factor, known as the activity (, the activity of the i th component) to the liquid phase fraction of a liquid mixture, some of the effects of the real solution can be accounted for. The activity of a real chemical is a function of the thermodynamic state of the system, i.e. temperature and pressure.
liquid: vapor: 78.1: 95.5 ‡ 95.5 ‡ ... Vapor–liquid equilibrium of the mixture of ethanol and water (including azeotrope) Solid–liquid equilibrium of the ...
Vapor pressure of liquid and solid benzene. Equilibrium vapor pressure can be defined as the pressure reached when a condensed phase is in equilibrium with its own vapor. In the case of an equilibrium solid, such as a crystal, this can be defined as the pressure when the rate of sublimation of a solid matches the rate of deposition of its vapor ...
This should be kept in mind when using cubic equations in calculations, e.g., of vapor-liquid equilibrium. In 1972 G. Soave [ 4 ] replaced the 1 T {\textstyle {\frac {1}{\sqrt {T}}}} term of the Redlich–Kwong equation with a function α ( T , ω ) involving the temperature and the acentric factor (the resulting equation is also known as the ...
The prediction of a vapor–liquid equilibrium is successful even in mixtures containing supercritical components. The mixture has to be subcritical though. In the given example carbon dioxide is the supercritical component with T c =304.19 K [13] and P c =7475 kPa. [14] The critical point of the mixture lies at T=411 K und P≈15000 kPa.