Search results
Results from the WOW.Com Content Network
T1 mapping has also been developed to quantify diffuse myocardial fibrosis. [20] T2-weighted imaging is mainly used to detect myocardial edema which may develop in acute myocarditis or infarction. Phase-contrast imaging uses bipolar gradients to encode velocity in a given direction and is used to assess valve disease and quantify shunts .
Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to form pictures of the anatomy and the physiological processes inside the body. MRI scanners use strong magnetic fields , magnetic field gradients, and radio waves to generate images of the organs in the body.
Delayed Gadolinium-enhanced MR Imaging of Articular Cartilage: Three-dimensional T1 Mapping with Variable Flip Angles and B1 Correction; Toward Imaging Biomarkers for Glycosaminoglycans; Longitudinal Evaluation of Cartilage Composition of Matrix-Associated Autologous Chondrocyte Transplants with 3-T Delayed Gadolinium-Enhanced MRI of Cartilage
VIBE (volumetric interpolated breath-hold examination) is an MRI sequence that produces T1-weighted gradient echo images in three-dimensions (3D). Apart from lower fluid signal intensity than a typical T1-weighted image, other appearances of VIBE images is similar to a typical T1-weighted image.
Diffusion tensor imaging (DTI) is a magnetic resonance imaging technique that enables the measurement of the restricted diffusion of water in tissue in order to produce neural tract images instead of using this data solely for the purpose of assigning contrast or colors to pixels in a cross-sectional image.
The common procedure for a DCE-MRI exam is to acquire a regular T1-weighted MRI scan (with no gadolinium), and then gadolinium is injected (usually as an intravenous bolus at a dose of 0.05–0.1 mmol/kg) before further T1-weighted scanning. DCE-MRI may be acquired with or without a pause for contrast injection and may have varying time ...
Magnetic resonance fingerprinting (MRF) is methodology in quantitative magnetic resonance imaging (MRI) characterized by a pseudo-randomized acquisition strategy. It involves creating unique signal patterns or 'fingerprints' for different materials or tissues after which a pattern recognition algorithm matches these fingerprints with a predefined dictionary of expected signal patterns.
Diffeomorphic mapping is the underlying technology for mapping and analyzing information measured in human anatomical coordinate systems which have been measured via Medical imaging [citation needed]. Diffeomorphic mapping is a broad term that actually refers to a number of different algorithms, processes, and methods.