Search results
Results from the WOW.Com Content Network
The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .
A free vector is a vector quantity having an undefined support or region of application; it can be freely translated with no consequences; a displacement vector is a prototypical example of free vector. Aside from the notion of units and support, physical vector quantities may also differ from Euclidean vectors in terms of metric.
In projectile motion, the horizontal motion and the vertical motion are independent of each other; that is, neither motion affects the other. This is the principle of compound motion established by Galileo in 1638, [1] and used by him to prove the parabolic form of projectile motion.
The vector projection of a vector on a nonzero vector is defined as [note 1] = , , , where , denotes the inner product of the vectors and . This means that proj u ( v ) {\displaystyle \operatorname {proj} _{\mathbf {u} }(\mathbf {v} )} is the orthogonal projection of v {\displaystyle \mathbf {v} } onto the line spanned by u ...
Projection (mathematics), any of several different types of geometrical mappings Projection (linear algebra), a linear transformation P from a vector space to itself such that P 2 = P; Projection (set theory), one of two closely related types of functions or operations in set theory; Projection (measure theory), use of a projection map in ...
A vector pointing from A to B. In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector [1] or spatial vector [2]) is a geometric object that has magnitude (or length) and direction. Euclidean vectors can be added and scaled to form a vector space.
Using linear algebra, a projective space of dimension n is defined as the set of the vector lines (that is, vector subspaces of dimension one) in a vector space V of dimension n + 1. Equivalently, it is the quotient set of V \ {0} by the equivalence relation "being on the same vector line".
If 0° ≤ θ ≤ 90°, as in this case, the scalar projection of a on b coincides with the length of the vector projection. Vector projection of a on b (a 1), and vector rejection of a from b (a 2). In mathematics, the scalar projection of a vector on (or onto) a vector , also known as the scalar resolute of in the direction of , is given by: