enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Contradiction - Wikipedia

    en.wikipedia.org/wiki/Contradiction

    EFQ is equivalent to ex contradiction quodlibet, axiomatized , over minimal logic. Peirce's rule (PR) is an axiom (()) that captures proof by contradiction without explicitly referring to absurdity. Minimal logic + PR + EFQ yields classical logic.

  3. Zermelo–Fraenkel set theory - Wikipedia

    en.wikipedia.org/wiki/Zermelo–Fraenkel_set_theory

    The axioms in order below are expressed in a mixture of first order logic and high-level abbreviations. Axioms 1–8 form ZF, while the axiom 9 turns ZF into ZFC. Following Kunen (1980), we use the equivalent well-ordering theorem in place of the axiom of choice for axiom 9. All formulations of ZFC imply that at least one set exists.

  4. Russell's paradox - Wikipedia

    en.wikipedia.org/wiki/Russell's_paradox

    In particular, Zermelo's axioms restricted the unlimited comprehension principle. With the additional contributions of Abraham Fraenkel, Zermelo set theory developed into the now-standard Zermelo–Fraenkel set theory (commonly known as ZFC when including the axiom of choice). The main difference between Russell's and Zermelo's solution to the ...

  5. Zermelo set theory - Wikipedia

    en.wikipedia.org/wiki/Zermelo_set_theory

    The axioms of Zermelo set theory are stated for objects, some of which (but not necessarily all) are sets, and the remaining objects are urelements and not sets. Zermelo's language implicitly includes a membership relation ∈, an equality relation = (if it is not included in the underlying logic), and a unary predicate saying whether an object is a set.

  6. Skolem's paradox - Wikipedia

    en.wikipedia.org/wiki/Skolem's_paradox

    In 1922, Skolem pointed out the seeming contradiction between the Löwenheim–Skolem theorem, which implies that there is a countable model of Zermelo's axioms, and Cantor's theorem, which states that uncountable sets exist, and which is provable from Zermelo's axioms. "So far as I know," Skolem wrote, "no one has called attention to this ...

  7. Paradoxes of set theory - Wikipedia

    en.wikipedia.org/wiki/Paradoxes_of_set_theory

    Besides the cardinality, which describes the size of a set, ordered sets also form a subject of set theory. The axiom of choice guarantees that every set can be well-ordered, which means that a total order can be imposed on its elements such that every nonempty subset has a first element with respect to that order.

  8. Principle of explosion - Wikipedia

    en.wikipedia.org/wiki/Principle_of_explosion

    In classical logic, intuitionistic logic, and similar logical systems, the principle of explosion [a] [b] is the law according to which any statement can be proven from a contradiction. [1] [2] [3] That is, from a contradiction, any proposition (including its negation) can be inferred; this is known as deductive explosion. [4] [5]

  9. Reductio ad absurdum - Wikipedia

    en.wikipedia.org/wiki/Reductio_ad_absurdum

    Reductio ad absurdum, painting by John Pettie exhibited at the Royal Academy in 1884. In logic, reductio ad absurdum (Latin for "reduction to absurdity"), also known as argumentum ad absurdum (Latin for "argument to absurdity") or apagogical arguments, is the form of argument that attempts to establish a claim by showing that the opposite scenario would lead to absurdity or contradiction.