Search results
Results from the WOW.Com Content Network
(This equation may be put on a rigorous foundation by interpreting it as a statement about differential forms.) One may view the method of integration by substitution as a partial justification of Leibniz's notation for integrals and derivatives. The formula is used to transform one integral into another integral that is easier to compute.
In mathematics, a change of variables is a basic technique used to simplify problems in which the original variables are replaced with functions of other variables. The intent is that when expressed in new variables, the problem may become simpler, or equivalent to a better understood problem.
The substitution is described in most integral calculus textbooks since the late 19th century, usually without any special name. [5] It is known in Russia as the universal trigonometric substitution , [ 6 ] and also known by variant names such as half-tangent substitution or half-angle substitution .
If we know that (,) satisfies an equation (like the Black–Scholes equation) we are guaranteed that we can make good use of the equation in the derivation of the equation for a new function (,) defined in terms of the old if we write the old V as a function of the new v and write the new and x as functions of the old t and S.
Euler substitution is a method for evaluating integrals of the form (, + +), where is a rational function of and + +. In such cases, the integrand can be changed to a rational function by using the substitutions of Euler.
To compute the integral, we set n to its value and use the reduction formula to express it in terms of the (n – 1) or (n – 2) integral. The lower index integral can be used to calculate the higher index ones; the process is continued repeatedly until we reach a point where the function to be integrated can be computed, usually when its index is 0 or 1.
This is the Euler method (or forward Euler method, in contrast with the backward Euler method, to be described below). The method is named after Leonhard Euler who described it in 1768. The Euler method is an example of an explicit method. This means that the new value y n+1 is defined in terms of things that are already known, like y n.
In order to quantify the number of substitutions, one may reconstruct the ancestral sequence and record the inferred changes at sites (straight counting – likely to provide an underestimate); fitting the substitution rates at sites into predetermined categories (Bayesian approach; poor for small data sets); and generating an individual ...