enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fermat's theorem (stationary points) - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem...

    Fermat's theorem is central to the calculus method of determining maxima and minima: in one dimension, one can find extrema by simply computing the stationary points (by computing the zeros of the derivative), the non-differentiable points, and the boundary points, and then investigating this set to determine the extrema.

  3. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    The higher-order derivative test or general derivative test is able to determine whether a function's critical points are maxima, minima, or points of inflection for a wider variety of functions than the second-order derivative test.

  4. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    Maxima and minima x 2: Unique global minimum at x = 0. x 3: No global minima or maxima. Although the first derivative (3x 2) is 0 at x = 0, this is an inflection point. (2nd derivative is 0 at that point.) Unique global maximum at x = e. (See figure at right) x −x: Unique global maximum over the positive real numbers at x = 1/e.

  5. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    At the remaining critical point (0, 0) the second derivative test is insufficient, and one must use higher order tests or other tools to determine the behavior of the function at this point. (In fact, one can show that f takes both positive and negative values in small neighborhoods around (0, 0) and so this point is a saddle point of f.)

  6. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    Taking derivatives and solving for critical points is therefore often a simple way to find local minima or maxima, which can be useful in optimization. By the extreme value theorem, a continuous function on a closed interval must attain its minimum and maximum values at least once. If the function is differentiable, the minima and maxima can ...

  7. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    We can therefore use Newton's method on its derivative ′ to find solutions to ′ =, also known as the critical points of . These solutions may be minima, maxima, or saddle points; see section "Several variables" in Critical point (mathematics) and also section "Geometric interpretation" in this article.

  8. Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Quasi-Newton_method

    In numerical analysis, a quasi-Newton method is an iterative numerical method used either to find zeroes or to find local maxima and minima of functions via an iterative recurrence formula much like the one for Newton's method, except using approximations of the derivatives of the functions in place of exact derivatives.

  9. Fermat's theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem

    Fermat's theorem (stationary points), about local maxima and minima of differentiable functions; Fermat's principle, about the path taken by a ray of light; Fermat polygonal number theorem, about expressing integers as a sum of polygonal numbers; Fermat's right triangle theorem, about squares not being expressible as the difference of two ...