enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Neutron radiation - Wikipedia

    en.wikipedia.org/wiki/Neutron_radiation

    Neutron radiation is a form of ionizing radiation that presents as free neutrons.Typical phenomena are nuclear fission or nuclear fusion causing the release of free neutrons, which then react with nuclei of other atoms to form new nuclides—which, in turn, may trigger further neutron radiation.

  3. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    The decay of a neutron within a nuclide is illustrated by the decay of the carbon isotope carbon-14, which has 6 protons and 8 neutrons. With its excess of neutrons, this isotope decays by beta decay to nitrogen-14 (7 protons, 7 neutrons), a process with a half-life of about 5,730 years . [ 37 ]

  4. Atomic nucleus - Wikipedia

    en.wikipedia.org/wiki/Atomic_nucleus

    Protons define the entire charge of a nucleus, and hence its chemical identity. Neutrons are electrically neutral, but contribute to the mass of a nucleus to nearly the same extent as the protons. Neutrons can explain the phenomenon of isotopes (same atomic number with different atomic mass). The main role of neutrons is to reduce electrostatic ...

  5. Neutron activation - Wikipedia

    en.wikipedia.org/wiki/Neutron_activation

    Carbon-14, most frequently but not solely, generated by the neutron activation of atmospheric nitrogen-14 with a thermal neutron, is (together with its dominant natural production pathway from cosmic ray-air interactions and historical production from atmospheric nuclear testing) also generated in comparatively minute amounts inside many ...

  6. Discovery of the neutron - Wikipedia

    en.wikipedia.org/wiki/Discovery_of_the_neutron

    [8]: 25 Nevertheless, Rutherford had conjectured the existence of the deuteron, a +1 charge particle of mass 2, and the neutron, a neutral particle of mass 1. [32]: 396 The former is the nucleus of deuterium, discovered in 1931 by Harold Urey. [34] The mass of the hypothetical neutral particle would be little different from that of the proton.

  7. Neutron scattering - Wikipedia

    en.wikipedia.org/wiki/Neutron_scattering

    Because neutrons are electrically neutral, they penetrate more deeply into matter than electrically charged particles of comparable kinetic energy, and thus are valuable as probes of bulk properties. Neutrons interact with atomic nuclei and with magnetic fields from unpaired electrons, causing pronounced interference and energy transfer effects ...

  8. Nuclear binding energy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_binding_energy

    An example that illustrates nuclear binding energy is the nucleus of 12 C (carbon-12), which contains 6 protons and 6 neutrons. The protons are all positively charged and repel each other, but the nuclear force overcomes the repulsion and causes them to stick together.

  9. Neutron emission - Wikipedia

    en.wikipedia.org/wiki/Neutron_emission

    These neutrons are sometimes emitted with a delay, giving them the term delayed neutrons, but the actual delay in their production is a delay waiting for the beta decay of fission products to produce the excited-state nuclear precursors that immediately undergo prompt neutron emission. Thus, the delay in neutron emission is not from the neutron ...