Search results
Results from the WOW.Com Content Network
For example, doping pure silicon with a small amount of phosphorus will increase the carrier density of electrons, n. Then, since n > p, the doped silicon will be a n-type extrinsic semiconductor. Doping pure silicon with a small amount of boron will increase the carrier density of holes, so then p > n, and it will be a p-type extrinsic ...
4 derivatives where the central silicon atom shares an electron pair with each of the four atoms it is bonded to. [49] The first four ionisation energies of silicon are 786.3, 1576.5, 3228.3, and 4354.4 kJ/mol respectively; these figures are high enough to preclude the possibility of simple cationic chemistry for the element.
Electron density or electronic density is the measure of the probability of an electron being present at an infinitesimal element of space surrounding any given point. It is a scalar quantity depending upon three spatial variables and is typically denoted as either ρ ( r ) {\displaystyle \rho ({\textbf {r}})} or n ( r ) {\displaystyle n ...
— "Values ranging from 21.3 to 21.5 gm/cm 3 at 20 °C have been reported for the density of annealed platinum; the best value being about 21.45 gm/cm 3 at 20 °C." 21.46 g/cm 3 — Rose, T. Kirke. The Precious Metals, Comprising Gold, Silver and Platinum .
In terms of density, m = ρV, where ρ is the volumetric mass density, V is the volume occupied by the mass. This energy can be released by the processes of nuclear fission (~ 0.1%), nuclear fusion (~ 1%), or the annihilation of some or all of the matter in the volume V by matter– antimatter collisions (100%).
Silicon has a moderate ionisation energy (786.5 kJ/mol), moderate electron affinity (134 kJ/mol), and moderate electronegativity (1.9). It is a poor oxidising agent (Si + 4e → Si 4 = –0.147 at pH 0). As a metalloid the chemistry of silicon is largely covalent in nature, noting it can form alloys with metals such as iron and copper.
Using the number density of an ideal gas at 0 °C and 1 atm as a yardstick: n 0 = 1 amg = 2.686 7774 × 10 25 m −3 is often introduced as a unit of number density, for any substances at any conditions (not necessarily limited to an ideal gas at 0 °C and 1 atm). [3]
The most successful approach is based on the homogeneous electron gas. This is constructed by placing N interacting electrons in to a volume, V, with a positive background charge keeping the system neutral. N and V are then taken to infinity in the manner that keeps the density (ρ = N / V) finite. This is a useful approximation as the total ...