Search results
Results from the WOW.Com Content Network
A strictly diagonally dominant matrix (or an irreducibly diagonally dominant matrix [2]) is non-singular. A Hermitian diagonally dominant matrix with real non-negative diagonal entries is positive semidefinite. This follows from the eigenvalues being real, and Gershgorin's circle theorem. If the symmetry requirement is eliminated, such a matrix ...
The standard convergence condition (for any iterative method) is when the spectral radius of the iteration matrix is less than 1: ((+)) < A sufficient (but not necessary) condition for the method to converge is that the matrix A is strictly or irreducibly diagonally dominant. Strict row diagonal dominance means that for each row, the absolute ...
Though it can be applied to any matrix with non-zero elements on the diagonals, convergence is only guaranteed if the matrix is either strictly diagonally dominant, [1] or symmetric and positive definite. It was only mentioned in a private letter from Gauss to his student Gerling in 1823. [2] A publication was not delivered before 1874 by ...
The dominance frontier of a node d is the set of all nodes n i such that d dominates an immediate predecessor of n i, but d does not strictly dominate n i. It is the set of nodes where d 's dominance stops. A dominator tree is a tree where each node's children are those nodes it immediately dominates. The start node is the root of the tree.
Since generically, the dominant eigenvalue of is unique, the first Jordan block of is the matrix [], where is the largest eigenvalue of A in magnitude. The starting vector b 0 {\displaystyle b_{0}} can be written as a linear combination of the columns of V :
Let = be an positive matrix: > for ,.Then the following statements hold. There is a positive real number r, called the Perron root or the Perron–Frobenius eigenvalue (also called the leading eigenvalue, principal eigenvalue or dominant eigenvalue), such that r is an eigenvalue of A and any other eigenvalue λ (possibly complex) in absolute value is strictly smaller than r, |λ| < r.
A complex square matrix is said to be weakly chained diagonally dominant (WCDD) if A {\displaystyle A} is WDD and for each row i 1 {\displaystyle i_{1}} that is not SDD, there exists a walk i 1 → i 2 → ⋯ → i k {\displaystyle i_{1}\rightarrow i_{2}\rightarrow \cdots \rightarrow i_{k}} in the directed graph of A {\displaystyle A} ending ...
In numerical linear algebra, the tridiagonal matrix algorithm, also known as the Thomas algorithm (named after Llewellyn Thomas), is a simplified form of Gaussian elimination that can be used to solve tridiagonal systems of equations. A tridiagonal system for n unknowns may be written as