Search results
Results from the WOW.Com Content Network
The Weiss magneton was experimentally derived in 1911 as a unit of magnetic moment equal to 1.53 × 10 −24 joules per tesla, which is about 20% of the Bohr magneton. In the summer of 1913, the values for the natural units of atomic angular momentum and magnetic moment were obtained by the Danish physicist Niels Bohr as a consequence of his ...
In units of the Bohr magneton (μ B), it is −1.001 159 652 180 59 (13) μ B, [2] a value that was measured with a relative accuracy of 1.3 × 10 −13. Magnetic moment of an electron [ edit ]
This is the basis for defining the magnetic moment units of Bohr magneton (assuming charge-to-mass ratio of the electron) and nuclear magneton (assuming charge-to-mass ratio of the proton). See electron magnetic moment and Bohr magneton for more details.
The spin magnetic moment of the electron is =, where is the spin (or intrinsic angular-momentum) vector, is the Bohr magneton, and = is the electron-spin g-factor. Here μ {\displaystyle {\boldsymbol {\mu }}} is a negative constant multiplied by the spin , so the spin magnetic moment is antiparallel to the spin.
In the first-order Zeeman effect the energy difference between the two states is proportional to the applied field strength. Denoting the energy difference as Δ E , the Boltzmann distribution gives the ratio of the two populations as e − Δ E / k T {\displaystyle e^{-\Delta E/kT}} , where k is the Boltzmann constant and T is the temperature ...
The best available measurement for the value of the magnetic moment of the neutron is μ n = −1.913 042 76 (45) μ N. [3] [4] Here, μ N is the nuclear magneton, a standard unit for the magnetic moments of nuclear components, and μ B is the Bohr magneton, both being physical constants.
The energy levels of an electron around a nucleus are given by: = (typically between 1 eV and 10 3 eV), where R ∞ is the Rydberg constant, Z is the atomic number, n is the principal quantum number, h is the Planck constant, and c is the speed of light.
The Bohr model of the hydrogen atom (Z = 1) or a hydrogen-like ion (Z > 1), where the negatively charged electron confined to an atomic shell encircles a small, positively charged atomic nucleus and where an electron jumps between orbits, is accompanied by an emitted or absorbed amount of electromagnetic energy (hν). [1]