Search results
Results from the WOW.Com Content Network
In elementary algebra, root rationalisation (or rationalization) is a process by which radicals in the denominator of an algebraic fraction are eliminated.. If the denominator is a monomial in some radical, say , with k < n, rationalisation consists of multiplying the numerator and the denominator by , and replacing by x (this is allowed, as, by definition, a n th root of x is a number that ...
Rationalisation (mathematics), the process of removing a square root or imaginary number from the denominator of a fraction; Rationalization (psychology), a psychological defense mechanism in which perceived controversial behaviors are logically justified also known as "making excuses"
In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...
In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers ; they may be taken in any field K .
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra , number theory , and many other areas of mathematics.
A rational algebraic expression (or rational expression) is an algebraic expression that can be written as a quotient of polynomials, such as x 2 + 4x + 4. An irrational algebraic expression is one that is not rational, such as √ x + 4.
Q – rational numbers. QED – "Quod erat demonstrandum", a Latin phrase used at the end of a definitive proof. QEF – "Quod erat faciendum", a Latin phrase sometimes used at the end of a geometrical construction.
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.