Search results
Results from the WOW.Com Content Network
Chlorofluorocarbons (CFCs), once major components of numerous commercial aerosol products, have proven damaging to Earth's ozone layer and resulted in the wide-reaching Montreal Protocol; though in truth the chlorine in CFCs is the destructive actor, fluorine is an important part of these molecules because it makes them very stable and long-lived.
As another difference, chlorine has a significant chemistry in positive oxidation states while fluorine does not. Chlorination often leads to higher oxidation states than bromination or iodination but lower oxidation states than fluorination. Chlorine tends to react with compounds including M–M, M–H, or M–C bonds to form M–Cl bonds. [40]
The oxidation states are also maintained in articles of the elements (of course), and systematically in the table {{Infobox element/symbol-to-oxidation-state}} (An overview is here). See also [ edit ]
Parts-per-million cube of relative abundance by mass of elements in an average adult human body down to 1 ppm. About 99% of the mass of the human body is made up of six elements: oxygen, carbon, hydrogen, nitrogen, calcium, and phosphorus. Only about 0.85% is composed of another five elements: potassium, sulfur, sodium, chlorine, and magnesium ...
ClO 2 F was first reported by Schmitz and Schumacher in 1942, who prepared it by the fluorination of ClO 2. [2] The compound is more conveniently prepared by reaction of sodium chlorate and chlorine trifluoride [3] and purified by vacuum fractionation, i.e. selectively condensing this species separately from other products. This species is a ...
Several elements show their highest oxidation state only in a few compounds, one of which is the fluoride; and some elements' highest known oxidation state is seen exclusively in a fluoride. For groups 1–5, 13–16 (except nitrogen), the highest oxidation states of oxides and fluorides are always equal. Differences are only seen in chromium ...
Chlorine and oxygen can bond in a number of ways: chlorine monoxide radical, ClO•, chlorine (II) oxide radical; chloroperoxyl radical, ClOO•, chlorine (II) peroxide radical; chlorine dioxide, ClO 2, chlorine (IV) oxide; chlorine trioxide radical, ClO 3 •, chlorine (VI) oxide radical; chlorine tetroxide radical, ClO 4 •, chlorine (VII ...
Chloride can be oxidized but not reduced. The first oxidation, as employed in the chlor-alkali process, is conversion to chlorine gas. Chlorine can be further oxidized to other oxides and oxyanions including hypochlorite (ClO −, the active ingredient in chlorine bleach), chlorine dioxide (ClO 2), chlorate (ClO − 3), and perchlorate (ClO − 4).