Search results
Results from the WOW.Com Content Network
Raoult's law (/ ˈ r ɑː uː l z / law) is a relation of physical chemistry, with implications in thermodynamics.Proposed by French chemist François-Marie Raoult in 1887, [1] [2] it states that the partial pressure of each component of an ideal mixture of liquids is equal to the vapor pressure of the pure component (liquid or solid) multiplied by its mole fraction in the mixture.
Raoult's law is applicable only to non-electrolytes (uncharged species); it is most appropriate for non-polar molecules with only weak intermolecular attractions (such as London forces). Systems that have vapor pressures higher than indicated by the above formula are said to have positive deviations.
Mole fraction vs. temperature diagram for a two-component system, showing the bubble point and dew point curves. In thermodynamics, the bubble point is the temperature (at a given pressure) where the first bubble of vapor is formed when heating a liquid consisting of two or more components.
In terms of thermodynamic, boiling point elevation has an entropic origin and can be explained by using the vapor pressure or chemical potential. The vapor pressure affects the solute shown by Raoult's Law while the free energy change and chemical potential are shown by Gibbs free energy.
An osmotic coefficient is a quantity which characterises the deviation of a solvent from ideal behaviour, referenced to Raoult's law.It can be also applied to solutes. Its definition depends on the ways of expressing chemical composition of mixtures.
A Las Vegas family is stressing the importance of parental instincts after their 11-year-old Elijah Portillo collapsed in school. While his mom and dad knew something was wrong, doctors said ...
What could really move the needle on electric vehicle sales? "The three-row electric vehicle market is so important for EV sales in the U.S.," Ed Kim, president and chief analyst of AutoPacific ...
The equilibrium concentration of each component in the liquid phase is often different from its concentration (or vapor pressure) in the vapor phase, but there is a relationship. The VLE concentration data can be determined experimentally or approximated with the help of theories such as Raoult's law, Dalton's law, and Henry's law.