Search results
Results from the WOW.Com Content Network
225 is a highly composite odd number, meaning that it has more divisors than any smaller odd numbers. [7] After 1 and 9, 225 is the third smallest number n for which σ(φ(n)) = φ(σ(n)), where σ is the sum of divisors function and φ is Euler's totient function. [8] 225 is a refactorable number. [9] 225 is the smallest square number to have ...
The remaining numbers are doubled and incremented by one, giving a list of the odd prime numbers (that is, all primes except 2) below 2n + 2. The sieve of Sundaram sieves out the composite numbers just as the sieve of Eratosthenes does, but even numbers are not considered; the work of "crossing out" the multiples of 2 is done by the final ...
This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.
A composite number is a positive integer that can be formed by multiplying two smaller positive integers. Accordingly it is a positive integer that has at least one divisor other than 1 and itself. [1] [2] Every positive integer is composite, prime, or the unit 1, so the composite numbers are exactly the numbers that are not prime and not a unit.
[4] 5-smooth numbers are also called regular numbers or Hamming numbers; [5] 7-smooth numbers are also called humble numbers, [6] and sometimes called highly composite, [7] although this conflicts with another meaning of highly composite numbers. Here, note that B itself is not required to appear among the factors of a B-smooth number. If the ...
Therefore, every prime number other than 2 is an odd number, and is called an odd prime. [10] Similarly, when written in the usual decimal system, all prime numbers larger than 5 end in 1, 3, 7, or 9. The numbers that end with other digits are all composite: decimal numbers that end in 0, 2, 4, 6, or 8 are even, and decimal numbers that end in ...
Optionally, perform trial division to check if n is divisible by a small prime number less than some convenient limit. Perform a base 2 strong probable prime test. If n is not a strong probable prime base 2, then n is composite; quit. Find the first D in the sequence 5, −7, 9, −11, 13, −15, ... for which the Jacobi symbol (D/n) is −1.
1 2 3 5. The first number after 1 for wheel 2 is 5; note it as a prime. Now form wheel 3 with length 5 × 6 = 30 by first extending wheel 2 up to 30 and then deleting 5 times each number in wheel 2 (in reverse order!), to get 1 2 3 5 7 11 13 17 19 23 25 29. The first number after 1 for wheel 3 is 7; note it as a prime.