Ad
related to: discrete mathematics partially ordered sets
Search results
Results from the WOW.Com Content Network
A partially ordered set (poset for short) is an ordered pair = (,) consisting of a set (called the ground set of ) and a partial order on . When the meaning is clear from context and there is no ambiguity about the partial order, the set X {\displaystyle X} itself is sometimes called a poset.
Order theory is a branch of mathematics that investigates the ... it is called a partially ordered set, ... a discrete order, i.e. from a set ordered by the identity ...
Hasse diagram of the set P of divisors of 60, partially ordered by the relation "x divides y".The red subset = {1,2,3,4} has two maximal elements, viz. 3 and 4, and one minimal element, viz. 1, which is also its least element.
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).
Dilworth's theorem for infinite partially ordered sets states that a partially ordered set has finite width w if and only if it may be partitioned into w chains. For, suppose that an infinite partial order P has width w, meaning that there are at most a finite number w of elements in any antichain.
In mathematics, and more specifically in order theory, several different types of ordered set have been studied. They include: Cyclic orders, orderings in which triples of elements are either clockwise or counterclockwise; Lattices, partial orders in which each pair of elements has a greatest lower bound and a least upper bound.
A set equipped with a total order is a totally ordered set; [5] the terms simply ordered set, [2] linearly ordered set, [3] [5] and loset [6] [7] are also used. The term chain is sometimes defined as a synonym of totally ordered set, [5] but generally refers to a totally ordered subset of a given partially ordered set.
The term complete partial order, abbreviated cpo, has several possible meanings depending on context. A partially ordered set is a directed-complete partial order (dcpo) if each of its directed subsets has a supremum. (A subset of a partial order is directed if it is non-empty and every pair of elements has an upper bound in the subset.)
Ad
related to: discrete mathematics partially ordered sets