enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logarithmic differentiation - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_differentiation

    In calculus, logarithmic differentiation or differentiation by taking logarithms is a method used to differentiate functions by employing the logarithmic derivative of a function f, [1] (⁡) ′ = ′ ′ = (⁡) ′.

  3. Logarithmic derivative - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_derivative

    Many properties of the real logarithm also apply to the logarithmic derivative, even when the function does not take values in the positive reals. For example, since the logarithm of a product is the sum of the logarithms of the factors, we have (⁡) ′ = (⁡ + ⁡) ′ = (⁡) ′ + (⁡) ′.

  4. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    This states that differentiation is the reverse process to integration. Differentiation has applications in nearly all quantitative disciplines. In physics, the derivative of the displacement of a moving body with respect to time is the velocity of the body, and the derivative of the velocity with respect to time is acceleration.

  5. List of calculus topics - Wikipedia

    en.wikipedia.org/wiki/List_of_calculus_topics

    Implicit differentiation; Stationary point. Maxima and minima; First derivative test; Second derivative test; Extreme value theorem; Differential equation; Differential operator; Newton's method; Taylor's theorem; L'Hôpital's rule; General Leibniz rule; Mean value theorem; Logarithmic derivative; Differential (calculus) Related rates ...

  6. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    Logarithms can be used to make calculations easier. For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d.

  7. Power rule - Wikipedia

    en.wikipedia.org/wiki/Power_rule

    The power rule for differentiation was derived by Isaac Newton and Gottfried Wilhelm Leibniz, each independently, for rational power functions in the mid 17th century, who both then used it to derive the power rule for integrals as the inverse operation. This mirrors the conventional way the related theorems are presented in modern basic ...

  8. Product rule - Wikipedia

    en.wikipedia.org/wiki/Product_rule

    Using that the logarithm of a product is the sum of the logarithms of the factors, the sum rule for derivatives gives immediately ⁡ = = ⁡ (). The last above expression of the derivative of a product is obtained by multiplying both members of this equation by the product of the f i . {\displaystyle f_{i}.}

  9. Related rates - Wikipedia

    en.wikipedia.org/wiki/Related_rates

    Differentiation with respect to time or one of the other variables requires application of the chain rule, [1] since most problems involve several variables. Fundamentally, if a function F {\displaystyle F} is defined such that F = f ( x ) {\displaystyle F=f(x)} , then the derivative of the function F {\displaystyle F} can be taken with respect ...