Search results
Results from the WOW.Com Content Network
A table or chart of nuclides is a two-dimensional graph of isotopes of the elements, in which one axis represents the number of neutrons (symbol N) and the other represents the number of protons (atomic number, symbol Z) in the atomic nucleus. Each point plotted on the graph thus represents a nuclide of a known or hypothetical chemical element.
At least 3,300 nuclides have been experimentally characterized [1] (see List of radioactive nuclides by half-life for the nuclides with decay half-lives less than one hour). A nuclide is defined conventionally as an experimentally examined bound collection of protons and neutrons that either is stable or has an observed decay mode.
The first printed edition of the Karlsruhe Nuclide Chart of 1958 in the form of a wall chart was created by Walter Seelmann-Eggebert and his assistant Gerda Pfennig. Walter Seelmann-Eggebert was director of the Radiochemistry Institute in the 1956 founded "Kernreaktor Bau- und Betriebsgesellschaft mbH" in Karlsruhe, Germany (a predecessor institution of the later "(Kern-)Forschungszentrum ...
Interactive Chart of Nuclides (Brookhaven National Laboratory) The Lund/LBNL Nuclear Data Search; An isotope table with clickable information on every isotope and its decay routes is available at chemlab.pc.maricopa.edu; An example of free Universal Nuclide Chart with decay information for over 3000 nuclides is available at Nucleonica.net.
Interactive Chart of Nuclides (Brookhaven National Laboratory) The Lund/LBNL Nuclear Data Search; An isotope table with clickable information on every isotope and its decay routes is available at chemlab.pc.maricopa.edu; An example of free Universal Nuclide Chart with decay information for over 3000 nuclides is available at Nucleonica.net.
An example of nuclides made by nuclear reactions, are cosmogenic 14 C (radiocarbon) that is made by cosmic ray bombardment of other elements, and nucleogenic 239 Pu which is still being created by neutron bombardment of natural 238 U as a result of natural fission in uranium ores. Cosmogenic nuclides may be either stable or radioactive.
The tables of elements are sorted in order of decreasing number of nuclides associated with each element. (For a list sorted entirely in terms of half-lives of nuclides, with mixing of elements, see List of nuclides.) Stable and unstable (marked decays) nuclides are given, with symbols for unstable (radioactive) nuclides in italics. Note that ...
An example of a series of isobars is 40 S, 40 Cl, 40 Ar, 40 K, and 40 Ca. While the nuclei of these nuclides all contain 40 nucleons, they contain varying numbers of protons and neutrons. [1] The term "isobars" (originally "isobares") for nuclides was suggested by British chemist Alfred Walter Stewart in 1918. [2]