Search results
Results from the WOW.Com Content Network
Electricity, Magnetism, and Light. Academic. ISBN 978-0-12-619455-5. pp. 486–489 gives a simple mathematical discussion of the surface currents responsible for the Meissner effect, in the case of a long magnet levitated above a superconducting plane. Tinkham, M. (2004). Introduction to Superconductivity. Dover Books on Physics (2nd ed.). Dover.
Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other. Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, magnetism is one of two aspects of electromagnetism .
Magnetochemistry is concerned with the magnetic properties of chemical compounds and elements.Magnetic properties arise from the spin and orbital angular momentum of the electrons contained in a compound.
Ørsted investigated and found the physical law describing the magnetic field, now known as Ørsted's law. Ørsted's discovery was the first connection found between electricity and magnetism, and the first of two laws that link the two; the other is Faraday's law of induction.
The second of Maxwell's equations is known as Gauss's law for magnetism and, similarly to the first Gauss's law, it describes flux, but instead of electric flux, it describes magnetic flux. According to Gauss's law for magnetism, the flow of magnetic field through a closed surface is always zero.
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
In atomic physics, spin–orbit coupling, also known as spin-pairing, describes a weak magnetic interaction, or coupling, of the particle spin and the orbital motion of this particle, e.g. the electron spin and its motion around an atomic nucleus. One of its effects is to separate the energy of internal states of the atom, e.g. spin-aligned and ...
Examples of this force include: electricity, magnetism, radio waves, microwaves, infrared, visible light, X-rays and gamma rays. Electromagnetism mediates all chemical, biological, electrical and electronic processes.