enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gas exchange - Wikipedia

    en.wikipedia.org/wiki/Gas_exchange

    Gas exchange is the physical process by which gases move passively by diffusion across a surface. For example, this surface might be the air/water interface of a water body, the surface of a gas bubble in a liquid, a gas-permeable membrane, or a biological membrane that forms the boundary between an organism and its extracellular environment.

  3. Respiratory system of insects - Wikipedia

    en.wikipedia.org/wiki/Respiratory_system_of_insects

    At the end of each tracheal branch, a special cell provides a thin, moist interface for the exchange of gases between atmospheric air and a living cell. Oxygen in the tracheal tube first dissolves in the liquid of the tracheole and then diffuses across the cell membrane into the cytoplasm of an adjacent cell.

  4. Physiology of decompression - Wikipedia

    en.wikipedia.org/wiki/Physiology_of_decompression

    Air in the alveoli of the lungs is diluted by saturated water vapour (H 2 O) and carbon dioxide (CO 2), a metabolic product given off by the blood, and contains less oxygen (O 2) than atmospheric air as some of it is taken up by the blood for metabolic use. The resulting partial pressure of nitrogen is about 0.758 bar.

  5. Respiratory system - Wikipedia

    en.wikipedia.org/wiki/Respiratory_system

    Gas exchange takes place in the gills which consist of thin or very flat filaments and lammellae which expose a very large surface area of highly vascularized tissue to the water. Other animals, such as insects, have respiratory systems with very simple anatomical features, and in amphibians, even the skin plays a vital role in gas exchange.

  6. Diffusing capacity - Wikipedia

    en.wikipedia.org/wiki/Diffusing_capacity

    Diffusing capacity of the lung (D L) (also known as transfer factor) measures the transfer of gas from air in the lung, to the red blood cells in lung blood vessels. It is part of a comprehensive series of pulmonary function tests to determine the overall ability of the lung to transport gas into and out of the blood.

  7. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    Transport phenomena encompass all agents of physical change in the universe. Moreover, they are considered to be fundamental building blocks which developed the universe, and which are responsible for the success of all life on Earth. However, the scope here is limited to the relationship of transport phenomena to artificial engineered systems. [2]

  8. Exhalation - Wikipedia

    en.wikipedia.org/wiki/Exhalation

    The main reason for exhalation is to rid the body of carbon dioxide, which is the waste product of gas exchange in humans. Air is brought into the lungs through inhalation. Diffusion in the alveoli allows for the exchange of O 2 into the pulmonary capillaries and the removal of CO 2 and other gases from the pulmonary capillaries to be exhaled ...

  9. Maxwell–Stefan diffusion - Wikipedia

    en.wikipedia.org/wiki/Maxwell–Stefan_diffusion

    The Maxwell–Stefan diffusion (or Stefan–Maxwell diffusion) is a model for describing diffusion in multicomponent systems. The equations that describe these transport processes have been developed independently and in parallel by James Clerk Maxwell [ 1 ] for dilute gases and Josef Stefan [ 2 ] for liquids.