Search results
Results from the WOW.Com Content Network
Dirac was able to derive Einstein's and coefficients from first principles, and showed that the Bose–Einstein statistics of photons is a natural consequence of quantizing the electromagnetic field correctly (Bose's reasoning went in the opposite direction; he derived Planck's law of black-body radiation by assuming B–E statistics). In Dirac ...
Perhaps the most famous conference was the fifth Solvay Conference on Physics, which was held from 24 to 29 October 1927. The subject was Electrons and Photons and the world's most notable physicists met to discuss the newly formulated quantum theory. The leading figures were Albert Einstein and Niels Bohr.
Einstein's work predicted that the energy of individual ejected electrons increases linearly with the frequency of the light. The precise relationship had not at that time been tested. By 1905 it was known that the energy of photoelectrons increases with increasing frequency of incident light and is independent of the intensity of the light.
Photons are massless particles of definite energy, definite momentum, and definite spin. To explain the photoelectric effect, Albert Einstein assumed heuristically in 1905 that an electromagnetic field consists of particles of energy of amount hν, where h is the Planck constant and ν is the wave frequency.
A spectrum of many such photons will show an emission spike at the wavelength associated with these photons. An absorption line is formed when an atom or molecule makes a transition from a lower, E 1, to a higher discrete energy state, E 2, with a photon being absorbed in the process. These absorbed photons generally come from background ...
Quantum entanglement has been demonstrated experimentally with photons, [12] [13] electrons, [14] [15] top quarks, [16] molecules [17] and even small diamonds. [18] The use of entanglement in communication , computation and quantum radar is an active area of research and development.
In 1905, Albert Einstein explained this effect by introducing the concept of light quanta or photons. Quantum particles are considered to have wave–particle duality. In quantum field theory, photons are explained as excitations of the electromagnetic field using second quantization.
Einstein's scientific publications are listed below in four tables: journal articles, book chapters, books and authorized translations. Each publication is indexed in the first column by its number in the Schilpp bibliography (Albert Einstein: Philosopher–Scientist, pp. 694–730) and by its article number in Einstein's Collected Papers.