Search results
Results from the WOW.Com Content Network
Photons seem well-suited to be elements of an extremely fast quantum computer, and the quantum entanglement of photons is a focus of research. Nonlinear optical processes are another active research area, with topics such as two-photon absorption , self-phase modulation , modulational instability and optical parametric oscillators .
Photons with high photon energy can transform in quantum mechanics to lepton and quark pairs, the latter fragmented subsequently to jets of hadrons, i.e. protons, pions, etc.At high energies E the lifetime t of such quantum fluctuations of mass M becomes nearly macroscopic: t ≈ E/M 2; this amounts to flight lengths as large as one micrometer for electron pairs in a 100 GeV photon beam, while ...
An FM radio station transmitting at 100 MHz emits photons with an energy of about 4.1357 × 10 −7 eV. This minuscule amount of energy is approximately 8 × 10 −13 times the electron's mass (via mass–energy equivalence). Very-high-energy gamma rays have photon energies of 100 GeV to over 1 PeV (10 11 to 10 15 electronvolts) or 16 nJ to 160 ...
A Feynman diagram (box diagram) for photon–photon scattering: one photon scatters from the transient vacuum charge fluctuations of the other. Two-photon physics, also called gamma–gamma physics, is a branch of particle physics that describes the interactions between two photons.
This means that the space inside the cylinder will contain a blackbody-distributed photon gas. Unlike a massive gas, this gas will exist without the photons being introduced from the outside – the walls will provide the photons for the gas. Suppose the piston is pushed all the way into the cylinder so that there is an extremely small volume.
The red curve in the graph shows that photons around 610 nm (orange-red) have the highest amount of photosynthesis per photon. However, because short-wavelength photons carry more energy per photon, the maximum amount of photosynthesis per incident unit of energy is at a longer wavelength, around 650 nm (deep red).
Photonic molecules are a form of matter in which photons bind together to form "molecules". [1] [2] [3] They were first predicted in 2007.Photonic molecules are formed when individual (massless) photons "interact with each other so strongly that they act as though they have mass". [4]
This page was last edited on 18 February 2015, at 12:17 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.