Search results
Results from the WOW.Com Content Network
In computer programming, foreach loop (or for-each loop) is a control flow statement for traversing items in a collection. foreach is usually used in place of a standard for loop statement.
In computer programming, an anonymous function (function literal, expression or block) is a function definition that is not bound to an identifier. Anonymous functions are often arguments being passed to higher-order functions or used for constructing the result of a higher-order function that needs to return a function. [ 1 ]
The usual alternative is to use named functions and named recursion. Given an anonymous function, this can be done either by binding a name to the function, as in named function expressions in JavaScript, or by assigning the function to a variable and then calling the variable, as in function statements in JavaScript.
The term closure is often used as a synonym for anonymous function, though strictly, an anonymous function is a function literal without a name, while a closure is an instance of a function, a value, whose non-local variables have been bound either to values or to storage locations (depending on the language; see the lexical environment section below).
In computer science, a generator is a routine that can be used to control the iteration behaviour of a loop.All generators are also iterators. [1] A generator is very similar to a function that returns an array, in that a generator has parameters, can be called, and generates a sequence of values.
The function definitions has the function definition G = S added. In the above rule G is the function application that is substituted for the expression S. It is defined by, =- [, []] where V is the function name. It must be a new variable, i.e. a name not already used in the lambda expression,
Iterators however can be used and defined explicitly. For any iterable sequence type or class, the built-in function iter() is used to create an iterator object. The iterator object can then be iterated with the next() function, which uses the __next__() method internally, which returns the next element in the container. (The previous statement ...
Calling f with a regular function argument first applies this function to the value 2, then returns 3. However, when f is passed to call/cc (as in the last line of the example), applying the parameter (the continuation) to 2 forces execution of the program to jump to the point where call/cc was called, and causes call/cc to return the value 2.