Search results
Results from the WOW.Com Content Network
This distribution for a = 0, b = 1 and c = 0.5—the mode (i.e., the peak) is exactly in the middle of the interval—corresponds to the distribution of the mean of two standard uniform variables, that is, the distribution of X = (X 1 + X 2) / 2, where X 1, X 2 are two independent random variables with standard uniform distribution in [0, 1]. [1]
In that case the density around any given location is determined by calculating the density of a small volume around that location. In the limit of an infinitesimal volume the density of an inhomogeneous object at a point becomes: ρ ( r → ) = d m / d V {\displaystyle \rho ({\vec {r}})=dm/dV} , where d V {\displaystyle dV} is an elementary ...
A special type of area density is called column density (also columnar mass density or simply column density), denoted ρ A or σ. It is the mass of substance per unit area integrated along a path; [ 1 ] It is obtained integrating volumetric density ρ {\displaystyle \rho } over a column: [ 2 ] σ = ∫ ρ d s . {\displaystyle \sigma =\int \rho ...
Regular polygons; Description Figure Second moment of area Comment A filled regular (equiliteral) triangle with a side length of a = = [6] The result is valid for both a horizontal and a vertical axis through the centroid, and therefore is also valid for an axis with arbitrary direction that passes through the origin.
A triangle's centroid is the point that maximizes the product of the directed distances of a point from the triangle's sidelines. [ 20 ] Let A B C {\displaystyle ABC} be a triangle, let G {\displaystyle G} be its centroid, and let D , E , F {\displaystyle D,E,F} be the midpoints of segments B C , C A , A B , {\displaystyle BC,CA,AB,} respectively.
In the two-dimensional Euclidean plane, Joseph Louis Lagrange proved in 1773 that the highest-density lattice packing of circles is the hexagonal packing arrangement, [1] in which the centres of the circles are arranged in a hexagonal lattice (staggered rows, like a honeycomb), and each circle is surrounded by six other circles.
The hexagonal packing of circles on a 2-dimensional Euclidean plane. These problems are mathematically distinct from the ideas in the circle packing theorem.The related circle packing problem deals with packing circles, possibly of different sizes, on a surface, for instance the plane or a sphere.
In chemistry, the mass concentration ρ i (or γ i) is defined as the mass of a constituent m i divided by the volume of the mixture V. [1]= For a pure chemical the mass concentration equals its density (mass divided by volume); thus the mass concentration of a component in a mixture can be called the density of a component in a mixture.