enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cartesian coordinate system - Wikipedia

    en.wikipedia.org/wiki/Cartesian_coordinate_system

    The equation of a circle is (x − a) 2 + (y − b) 2 = r 2 where a and b are the coordinates of the center (a, b) and r is the radius. Cartesian coordinates are named for René Descartes, whose invention of them in the 17th century revolutionized mathematics by allowing the expression of problems of geometry in terms of algebra and calculus.

  3. Kampyle of Eudoxus - Wikipedia

    en.wikipedia.org/wiki/Kampyle_of_Eudoxus

    Download as PDF; Printable version ... [γραμμή], meaning simply "curved [line], curve") is a curve with a Cartesian equation of = ... the Kampyle has the equation

  4. Analytic geometry - Wikipedia

    en.wikipedia.org/wiki/Analytic_geometry

    In three dimensions, a single equation usually gives a surface, and a curve must be specified as the intersection of two surfaces (see below), or as a system of parametric equations. [18] The equation x 2 + y 2 = r 2 is the equation for any circle centered at the origin (0, 0) with a radius of r.

  5. Equation - Wikipedia

    en.wikipedia.org/wiki/Equation

    Cartesian coordinate system with a circle of radius 2 centered at the origin marked in red. The equation of a circle is (x − a) 2 + (y − b) 2 = r 2 where a and b are the coordinates of the center (a, b) and r is the radius. In Cartesian geometry, equations are used to describe geometric figures.

  6. Euclidean plane - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane

    A Euclidean plane with a chosen Cartesian coordinate system is called a Cartesian plane. The set R 2 {\displaystyle \mathbb {R} ^{2}} of the ordered pairs of real numbers (the real coordinate plane ), equipped with the dot product , is often called the Euclidean plane or standard Euclidean plane , since every Euclidean plane is isomorphic to it.

  7. Fermat's spiral - Wikipedia

    en.wikipedia.org/wiki/Fermat's_spiral

    The Fermat spiral with polar equation = can be converted to the Cartesian coordinates (x, y) by using the standard conversion formulas x = r cos φ and y = r sin φ.Using the polar equation for the spiral to eliminate r from these conversions produces parametric equations for one branch of the curve:

  8. Archimedean spiral - Wikipedia

    en.wikipedia.org/wiki/Archimedean_spiral

    From the above equation, it can thus be stated: position of the particle from point of start is proportional to angle θ as time elapses. Archimedes described such a spiral in his book On Spirals . Conon of Samos was a friend of his and Pappus states that this spiral was discovered by Conon.

  9. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    If = + is the distance from c 1 to c 2 we can normalize by =, =, = to simplify equation (1), resulting in the following system of equations: + =, + =; solve these to get two solutions (k = ±1) for the two external tangent lines: = = + = (+) Geometrically this corresponds to computing the angle formed by the tangent lines and the line of ...