Search results
Results from the WOW.Com Content Network
The cells after transformation are exposed to the selective media, and only cells containing the plasmid may survive. In this way, the antibiotics act as a filter to select only the bacteria containing the plasmid DNA. The vector may also contain other marker genes or reporter genes to facilitate selection of plasmids with cloned inserts.
Mitochondrial DNA (mtDNA) was found in the malaria parasite. [48] There are two forms of extrachromosomal DNA found in the malaria parasites. One of these is 6-kb linear DNA and the second is 35-kb circular DNA. These DNA molecules have been researched as potential nucleotide target sites for antibiotics. [49]
This is a loop of both strands of the chromosome which are joined to an earlier point in the double-stranded DNA by the 3' strand end invading the strand pair to form a D-loop. The joint is stabilized by the shelterin protein POT1. [12] The T-loop, which is completed by the D-loop splice, protects the end of the chromosome from damage. [13]
Circular DNA is DNA that forms a closed loop and has no ends. Examples include: Plasmids, mobile genetic elements; cccDNA, formed by some viruses inside cell nuclei; Circular bacterial chromosomes; Mitochondrial DNA (mtDNA) Chloroplast DNA (cpDNA), and that of other plastids; Extrachromosomal circular DNA (eccDNA)
3-The mobile plasmid is nicked and a single strand of DNA is then transferred to the recipient cell. 4-Both cells recircularize their plasmids, synthesize second strands, and reproduce pili; both cells are now viable donors. A pilus (Latin for 'hair'; pl.: pili) is a hair-like cell-surface appendage found on many bacteria and archaea. [1]
Plasmids are double-stranded extra chromosomal and generally circular DNA sequences that are capable of replication using the host cell's replication machinery. [7] Plasmid vectors minimalistically consist of an origin of replication that allows for semi-independent replication of the plasmid in the host.
DNA gyrase is not the sole enzyme responsible for decatenation. In an experiment by Zechiedrich, Khodursky and Cozzarelli in 1997, it was found that topoisomerase IV is the only important decatenase of DNA replication intermediates in bacteria. [20] When DNA gyrase alone was inhibited, most of the catenanes were unlinked.
In contrast to their bacterial counterparts, replicative helicases in eukaryotes are loaded onto origin duplex DNA in an inactive, double-hexameric form and only a subset of them (10-20% in mammalian cells) is activated during any given S phase, events that are referred to as origin firing. [105] [106] [107]