enow.com Web Search

  1. Ads

    related to: how to find radius of a curve formula calculator math worksheet pdf printable

Search results

  1. Results from the WOW.Com Content Network
  2. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...

  3. Sagitta (geometry) - Wikipedia

    en.wikipedia.org/wiki/Sagitta_(geometry)

    In the following equations, denotes the sagitta (the depth or height of the arc), equals the radius of the circle, and the length of the chord spanning the base of the arc. As 1 2 l {\displaystyle {\tfrac {1}{2}}l} and r − s {\displaystyle r-s} are two sides of a right triangle with r {\displaystyle r} as the hypotenuse , the Pythagorean ...

  4. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    Note that changing F into –F would not change the curve defined by F(x, y) = 0, but it would change the sign of the numerator if the absolute value were omitted in the preceding formula. A point of the curve where F x = F y = 0 is a singular point, which means that the curve is not differentiable at this point, and thus that the curvature is ...

  5. Osculating circle - Wikipedia

    en.wikipedia.org/wiki/Osculating_circle

    The circle with center at Q and with radius R is called the osculating circle to the curve γ at the point P. If C is a regular space curve then the osculating circle is defined in a similar way, using the principal normal vector N .

  6. List of formulae involving π - Wikipedia

    en.wikipedia.org/wiki/List_of_formulae_involving_π

    More formulas of this nature can be given, as explained by Ramanujan's theory of elliptic functions to alternative bases. Perhaps the most notable hypergeometric inversions are the following two examples, involving the Ramanujan tau function τ {\displaystyle \tau } and the Fourier coefficients j {\displaystyle \mathrm {j} } of the J-invariant ...

  7. Degree of curvature - Wikipedia

    en.wikipedia.org/wiki/Degree_of_curvature

    Curvature is usually measured in radius of curvature.A small circle can be easily laid out by just using radius of curvature, but degree of curvature is more convenient for calculating and laying out the curve if the radius is as large as a kilometer or mile, as is needed for large scale works like roads and railroads.

  8. Parallel curve - Wikipedia

    en.wikipedia.org/wiki/Parallel_curve

    Parallel curves of the implicit curve (red) with equation + = Generally the analytic representation of a parallel curve of an implicit curve is not possible. Only for the simple cases of lines and circles the parallel curves can be described easily. For example:

  9. Euler spiral - Wikipedia

    en.wikipedia.org/wiki/Euler_spiral

    A double-end Euler spiral. The curve continues to converge to the points marked, as t tends to positive or negative infinity. An Euler spiral is a curve whose curvature changes linearly with its curve length (the curvature of a circular curve is equal to the reciprocal of the radius). This curve is also referred to as a clothoid or Cornu spiral.

  1. Ads

    related to: how to find radius of a curve formula calculator math worksheet pdf printable