Search results
Results from the WOW.Com Content Network
Diffraction from a large three-dimensional periodic structure such as many thousands of atoms in a crystal is called Bragg diffraction. It is similar to what occurs when waves are scattered from a diffraction grating. Bragg diffraction is a consequence of interference between waves reflecting from many different crystal planes.
Hence we identify = =, means that allowed scattering vectors = are those equal to reciprocal lattice vectors for a crystal in diffraction, and this is the meaning of the Laue equations. This fact is sometimes called the Laue condition .
Visulization of flux through differential area and solid angle. As always ^ is the unit normal to the incident surface A, = ^, and ^ is a unit vector in the direction of incident flux on the area element, θ is the angle between them.
Same double-slit assembly (0.7 mm between slits); in top image, one slit is closed. In the single-slit image, a diffraction pattern (the faint spots on either side of the main band) forms due to the nonzero width of the slit. This diffraction pattern is also seen in the double-slit image, but with many smaller interference fringes.
Physical optics is used to explain effects such as diffraction. In physics, physical optics, or wave optics, is the branch of optics that studies interference, diffraction, polarization, and other phenomena for which the ray approximation of geometric optics is not valid.
In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when plane waves are incident on a diffracting object, and the diffraction pattern is viewed at a sufficiently long distance (a distance satisfying Fraunhofer condition) from the object (in the far-field region), and also when it is viewed at the focal plane of an imaging lens.
Davisson began work in 1921 to study electron bombardment and secondary electron emissions. A series of experiments continued through 1925. Prior to 1923, Davisson had been working with Charles H. Kunsman on detecting the effects of electron bombardment on tungsten when they noticed that 1% of the electrons bounced straight back to the electron gun in elastic scattering. This sm
Wave refraction in the manner of Huygens Wave diffraction in the manner of Huygens and Fresnel. The Huygens–Fresnel principle (named after Dutch physicist Christiaan Huygens and French physicist Augustin-Jean Fresnel) states that every point on a wavefront is itself the source of spherical wavelets, and the secondary wavelets emanating from different points mutually interfere. [1]