enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponentiation by squaring - Wikipedia

    en.wikipedia.org/wiki/Exponentiation_by_squaring

    In mathematics and computer programming, exponentiating by squaring is a general method for fast computation of large positive integer powers of a number, or more generally of an element of a semigroup, like a polynomial or a square matrix. Some variants are commonly referred to as square-and-multiply algorithms or binary exponentiation.

  3. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Inputs An integer b (base), integer e (exponent), and a positive integer m (modulus) Outputs The modular exponent c where c = b e mod m. Initialise c = 1 and loop variable e′ = 0; While e′ < e do Increment e′ by 1; Calculate c = (b ⋅ c) mod m; Output c; Note that at the end of every iteration through the loop, the equation c ≡ b e ...

  4. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    t. e. In computing, floating-point arithmetic (FP) is arithmetic that represents subsets of real numbers using an integer with a fixed precision, called the significand, scaled by an integer exponent of a fixed base. Numbers of this form are called floating-point numbers. [1]: 3 [2]: 10 For example, 12.345 is a floating-point number in base ten ...

  5. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    Double-precision binary floating-point is a commonly used format on PCs, due to its wider range over single-precision floating point, in spite of its performance and bandwidth cost. It is commonly known simply as double. The IEEE 754 standard specifies a binary64 as having: Sign bit: 1 bit. Exponent: 11 bits.

  6. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    The exponent field is an 8-bit unsigned integer from 0 to 255, in biased form: a value of 127 represents the actual exponent zero. Exponents range from −126 to +127 (thus 1 to 254 in the exponent field), because the biased exponent values 0 (all 0s) and 255 (all 1s) are reserved for special numbers ( subnormal numbers , signed zeros ...

  7. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself. In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power.

  8. Power of two - Wikipedia

    en.wikipedia.org/wiki/Power_of_two

    Power of two. A power of two is a number of the form 2n where n is an integer, that is, the result of exponentiation with number two as the base and integer n as the exponent. Powers of two with non-negative exponents are integers: 20 = 1, 21 = 2, and 2n is two multiplied by itself n times. [1][2] The first ten powers of 2 for non-negative ...

  9. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    IEEE 754 adds a bias to the exponent so that numbers can in many cases be compared conveniently by the same hardware that compares signed 2's-complement integers. Using a biased exponent, the lesser of two positive floating-point numbers will come out "less than" the greater following the same ordering as for sign and magnitude integers. If two ...