Search results
Results from the WOW.Com Content Network
Conversely, every line is the set of all solutions of a linear equation. The phrase "linear equation" takes its origin in this correspondence between lines and equations: a linear equation in two variables is an equation whose solutions form a line. If b ≠ 0, the line is the graph of the function of x that has been defined in the preceding ...
The honeycomb conjecture states that a regular hexagonal grid or honeycomb has the least total perimeter of any subdivision of the plane into regions of equal area. The conjecture was proven in 1999 by mathematician Thomas C. Hales .
In three-dimensional Euclidean space, these three planes represent solutions to linear equations, and their intersection represents the set of common solutions: in this case, a unique point. The blue line is the common solution to two of these equations. Linear algebra is the branch of mathematics concerning linear equations such as:
In general, a quadratic equation can be expressed in the form + + =, [42] where a is not zero (if it were zero, then the equation would not be quadratic but linear). Because of this a quadratic equation must contain the term a x 2 {\displaystyle ax^{2}} , which is known as the quadratic term.
In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the ...
The 7-cubic honeycomb or hepteractic honeycomb is the only regular space-filling tessellation (or honeycomb) in Euclidean 7-space. It is analogous to the square tiling of the plane and to the cubic honeycomb of 3-space. There are many different Wythoff constructions of this honeycomb.
It entails proving whether a solution exists for all 7th-degree equations using algebraic (variant: continuous) functions of two arguments. It was first presented in the context of nomography , and in particular "nomographic construction" — a process whereby a function of several variables is constructed using functions of two variables.
A set of at most d + 1 points in general linear position is also said to be affinely independent (this is the affine analog of linear independence of vectors, or more precisely of maximal rank), and d + 1 points in general linear position in affine d-space are an affine basis. See affine transformation for more.