Search results
Results from the WOW.Com Content Network
A quantity undergoing exponential decay. Larger decay constants make the quantity vanish much more rapidly. This plot shows decay for decay constant (λ) of 25, 5, 1, 1/5, and 1/25 for x from 0 to 5. A quantity is subject to exponential decay if it decreases at a rate proportional to its current value.
Half-life is constant over the lifetime of an exponentially decaying quantity, and it is a characteristic unit for the exponential decay equation. The accompanying table shows the reduction of a quantity as a function of the number of half-lives elapsed.
Exponential generating function; Exponential-Golomb coding; Exponential growth; Exponential hierarchy; Exponential integral; Exponential integrator; Exponential map (Lie theory) Exponential map (Riemannian geometry) Exponential map (discrete dynamical systems) Exponential notation; Exponential object (category theory) Exponential polynomials ...
First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.
Half time is the time taken by a quantity to reach one half of its extremal value, where the rate of change is proportional to the difference between the present value and the extremal value (i.e. in exponential decay processes). It is synonymous with half-life, but used in slightly different contexts.
Caesium in the body has a biological half-life of about one to four months. Mercury (as methylmercury) in the body has a half-life of about 65 days. Lead in the blood has a half life of 28–36 days. [29] [30] Lead in bone has a biological half-life of about ten years. Cadmium in bone has a biological half-life of about 30 years.
This results in the linear differential equation + =, where C is the capacitance of the capacitor. Solving this equation for V yields the formula for exponential decay: =, where V 0 is the capacitor voltage at time t = 0.
Clearance is a function of 1) ... Its definition follows from the differential equation that describes exponential decay and is used to ... elimination half-life and ...