enow.com Web Search

  1. Ad

    related to: distance in a directed graph diagram worksheet 1
  2. teacherspayteachers.com has been visited by 100K+ users in the past month

    • Packets

      Perfect for independent work!

      Browse our fun activity packs.

    • Free Resources

      Download printables for any topic

      at no cost to you. See what's free!

    • Worksheets

      All the printables you need for

      math, ELA, science, and much more.

    • Assessment

      Creative ways to see what students

      know & help them with new concepts.

Search results

  1. Results from the WOW.Com Content Network
  2. Distance (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Distance_(graph_theory)

    In the mathematical field of graph theory, the distance between two vertices in a graph is the number of edges in a shortest path (also called a graph geodesic) connecting them. This is also known as the geodesic distance or shortest-path distance. [1] Notice that there may be more than one shortest path between two vertices. [2]

  3. Distance matrix - Wikipedia

    en.wikipedia.org/wiki/Distance_matrix

    In general, a distance matrix is a weighted adjacency matrix of some graph. In a network, a directed graph with weights assigned to the arcs, the distance between two nodes of the network can be defined as the minimum of the sums of the weights on the shortest paths joining the two nodes (where the number of steps in the path is bounded). [2]

  4. Longest path problem - Wikipedia

    en.wikipedia.org/wiki/Longest_path_problem

    For most graphs, this transformation is not useful because it creates cycles of negative length in −G. But if G is a directed acyclic graph (DAG), then no negative cycles can be created, and a longest path in G can be found in linear time by applying a linear time algorithm for shortest paths in −G, which is also a directed acyclic graph. [4]

  5. Path (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Path_(graph_theory)

    A directed walk is a finite or infinite sequence of edges directed in the same direction which joins a sequence of vertices. [2]Let G = (V, E, ϕ) be a directed graph. A finite directed walk is a sequence of edges (e 1, e 2, …, e n − 1) for which there is a sequence of vertices (v 1, v 2, …, v n) such that ϕ(e i) = (v i, v i + 1) for i = 1, 2, …, n − 1.

  6. Distance from a point to a line - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    Also, let Q = (x 1, y 1) be any point on this line and n the vector (a, b) starting at point Q. The vector n is perpendicular to the line, and the distance d from point P to the line is equal to the length of the orthogonal projection of on n. The length of this projection is given by:

  7. Directed graph - Wikipedia

    en.wikipedia.org/wiki/Directed_graph

    The degree sequence of a directed graph is the list of its indegree and outdegree pairs; for the above example we have degree sequence ((2, 0), (2, 2), (0, 2), (1, 1)). The degree sequence is a directed graph invariant so isomorphic directed graphs have the same degree sequence.

  8. Nearest neighbor graph - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbor_graph

    The nearest neighbor graph (NNG) is a directed graph defined for a set of points in a metric space, such as the Euclidean distance in the plane. The NNG has a vertex for each point, and a directed edge from p to q whenever q is a nearest neighbor of p, a point whose distance from p is minimum among all the given points other than p itself. [1]

  9. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    Shortest path (A, C, E, D, F) between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.

  1. Ad

    related to: distance in a directed graph diagram worksheet 1