Search results
Results from the WOW.Com Content Network
The Blaschke–Lebesgue theorem says that the Reuleaux triangle has the least area of any convex curve of given constant width. [19] Every proper superset of a body of constant width has strictly greater diameter, and every Euclidean set with this property is a body of constant width.
Lifting each point from the plane to its elevated height lifts the triangles of the triangulation into three-dimensional surfaces, which form an approximation of a three-dimensional landform. A polygon triangulation is a subdivision of a given polygon into triangles meeting edge-to-edge, again with the property that the set of triangle vertices ...
Shrink the triangle to 1 / 2 height and 1 / 2 width, make three copies, and position the three shrunken triangles so that each triangle touches the two other triangles at a corner (image 2). Note the emergence of the central hole—because the three shrunken triangles can between them cover only 3 / 4 of the area of the ...
The boundary of a Reuleaux triangle is a constant width curve based on an equilateral triangle. All points on a side are equidistant from the opposite vertex. A Reuleaux triangle is a curved triangle with constant width, the simplest and best known curve of constant width other than the circle. [1]
In Euclidean space, such a dilation is a similarity of the space. [2] Dilations change the size but not the shape of an object or figure. Every dilation of a Euclidean space that is not a congruence has a unique fixed point [3] that is called the center of dilation. [4] Some congruences have fixed points and others do not. [5]
(Suppose x = (px, qx), z = (pz, qz), then x − z = (px − pz, qx − qz).) In the bounded, discrete case ( E is a grid and B is bounded), the supremum operator can be replaced by the maximum . Thus, dilation is a particular case of order statistics filters, returning the maximum value within a moving window (the symmetric of the structuring ...
Twelve key lengths of a triangle are the three side lengths, the three altitudes, the three medians, and the three angle bisectors. Together with the three angles, these give 95 distinct combinations, 63 of which give rise to a constructible triangle, 30 of which do not, and two of which are underdefined. [13]: pp. 201–203
In computational geometry, a Delaunay triangulation or Delone triangulation of a set of points in the plane subdivides their convex hull [1] into triangles whose circumcircles do not contain any of the points. This maximizes the size of the smallest angle in any of the triangles, and tends to avoid sliver triangles.