enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Feature engineering - Wikipedia

    en.wikipedia.org/wiki/Feature_engineering

    Feature engineering is a preprocessing step in supervised machine ... One of the applications of feature engineering has been clustering of feature-objects or sample ...

  3. Feature learning - Wikipedia

    en.wikipedia.org/wiki/Feature_learning

    In machine learning (ML), feature learning or representation learning [2] is a set of techniques that allow a system to automatically discover the representations needed for feature detection or classification from raw data. This replaces manual feature engineering and allows a machine to both learn the features and use them to perform a ...

  4. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters).

  5. Feature (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Feature_(machine_learning)

    In feature engineering, two types of features are commonly used: numerical and categorical. Numerical features are continuous values that can be measured on a scale. Examples of numerical features include age, height, weight, and income. Numerical features can be used in machine learning algorithms directly. [citation needed]

  6. DBSCAN - Wikipedia

    en.wikipedia.org/wiki/DBSCAN

    Assign each non-core point to a nearby cluster if the cluster is an ε (eps) neighbor, otherwise assign it to noise. A naive implementation of this requires storing the neighborhoods in step 1, thus requiring substantial memory. The original DBSCAN algorithm does not require this by performing these steps for one point at a time.

  7. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    k-means clustering is a method of vector quantization, originally from signal processing, that aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster.

  8. Feature scaling - Wikipedia

    en.wikipedia.org/wiki/Feature_scaling

    Feature standardization makes the values of each feature in the data have zero-mean (when subtracting the mean in the numerator) and unit-variance. This method is widely used for normalization in many machine learning algorithms (e.g., support vector machines , logistic regression , and artificial neural networks ).

  9. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Kernel methods owe their name to the use of kernel functions, which enable them to operate in a high-dimensional, implicit feature space without ever computing the coordinates of the data in that space, but rather by simply computing the inner products between the images of all pairs of data in the feature space. This operation is often ...