Search results
Results from the WOW.Com Content Network
An important equation for denudation is the stream power law: =, where E is erosion rate, K is the erodibility constant, A is drainage area, S is channel gradient, and m and n are functions that are usually given beforehand or assumed based on the location. [8] Most denudation measurements are based on stream load measurements and analysis of ...
Soil erosion is the denudation or wearing away of the upper layer of soil. It is a form of soil degradation. This natural process is caused by the dynamic activity of erosive agents, that is, water, ice (glaciers), snow, air (wind), plants, and animals (including humans).
Mass wasting is a general term for any process of erosion that is driven by gravity and in which the transported soil and rock is not entrained in a moving medium, such as water, wind, or ice. [2] The presence of water usually aids mass wasting, but the water is not abundant enough to be regarded as a transporting medium.
Denudation chronology is the study of the long-term evolution of topography seen as sequence. Denudation chronology revolves around episodes of landscape-wide erosion , better known as denudation . The cycle of erosion model is a common approach used to establish denudation chronologies.
Tectonic uplift results in denudation (processes that wear away the earth's surface) by raising buried rocks closer to the surface. This process can redistribute large loads from an elevated region to a topographically lower area as well – thus promoting an isostatic response in the region of denudation (which can cause local bedrock uplift).
Denudation is the process of wearing away the top layers of Earth's landscape. Because the denudation rate is normally too low to measure directly, it can be indirectly determined by measuring the sediment load of the streams that drain the area in question.
Deposition is the geological process in which sediments, soil and rocks are added to a landform or landmass. Wind, ice, water, and gravity transport previously weathered surface material, which, at the loss of enough kinetic energy in the fluid, is deposited, building up layers of sediment.
The geographic cycle, or cycle of erosion, is an idealized model that explains the development of relief in landscapes. [1] The model starts with the erosion that follows uplift of land above a base level and ends, if conditions allow, in the formation of a peneplain. [1]