Search results
Results from the WOW.Com Content Network
The star is in the propeller regime, and many of its observational properties are determined by the disc-magnetosphere interaction. A similar model for eRASSU J191213.9−441044 is supported by the results of its observations at ultraviolet wave lengths, which showed that its magnetic field strength does not exceed 50 MG. [37]
PSR B1937+21 is a pulsar located in the constellation Vulpecula a few degrees in the sky away from the first discovered pulsar, PSR B1919+21. [1] The name PSR B1937+21 is derived from the word "pulsar" and the declination and right ascension at which it is located, with the "B" indicating that the coordinates are for the 1950.0 epoch.
In fluid mechanics, the force density is the negative gradient of pressure. It has the physical dimensions of force per unit volume. Force density is a vector field representing the flux density of the hydrostatic force within the bulk of a fluid. Force density is represented by the symbol f, [1] and given by the following equation, where p is ...
Radial velocity is the velocity component of orbital velocity in the line of sight of the observer. Unlike true orbital velocity, radial velocity can be determined from Doppler spectroscopy of spectral lines in the light of a star, [3] or from variations in the arrival times of pulses from a radio pulsar. [4]
An X-ray pulsar is a type of binary star system consisting of a typical star (stellar companion) in orbit around a magnetized neutron star.The magnetic field strength at the surface of the neutron star is typically about 10 8 Tesla, over a trillion times stronger than the strength of the magnetic field measured at the surface of the Earth (60 μT).
calculation of () Radial distribution function for the Lennard-Jones model fluid at =, =.. In statistical mechanics, the radial distribution function, (or pair correlation function) () in a system of particles (atoms, molecules, colloids, etc.), describes how density varies as a function of distance from a reference particle.
The name "density of states effective mass" is used since the above expression for N C is derived via the density of states for a parabolic band. In practice, the effective mass extracted in this way is not quite constant in temperature ( N C does not exactly vary as T 3/2 ).
The pulsar was discovered by Russell Alan Hulse and Joseph Hooton Taylor Jr., of the University of Massachusetts Amherst in 1974. Their discovery of the system and analysis of it earned them the 1993 Nobel Prize in Physics "for the discovery of a new type of pulsar, a discovery that has opened up new possibilities for the study of gravitation." [8]