Search results
Results from the WOW.Com Content Network
This is the formula for the relativistic doppler shift where the difference in velocity between the emitter and observer is not on the x-axis. There are two special cases of this equation. The first is the case where the velocity between the emitter and observer is along the x-axis.
Translation by George Barker Jeffery and Wilfrid Perrett in The Principle of Relativity, London: Methuen and Company, Ltd. (1923). :Used the newly formulated theory of special relativity to introduce the mass energy formula. One of the Annus Mirabilis papers.
Hendrik Lorentz and Henri Poincaré developed their version of special relativity in a series of papers from about 1900 to 1905. They used Maxwell's equations and the principle of relativity to deduce a theory that is mathematically equivalent to the theory later developed by Einstein.
The Einstein field equations (EFE) may be written in the form: [5] [1] + = EFE on the wall of the Rijksmuseum Boerhaave in Leiden, Netherlands. where is the Einstein tensor, is the metric tensor, is the stress–energy tensor, is the cosmological constant and is the Einstein gravitational constant.
Help; Learn to edit; Community portal; Recent changes; Upload file; Special pages
1. First postulate (principle of relativity) The laws of physics take the same form in all inertial frames of reference.. 2. Second postulate (invariance of c) . As measured in any inertial frame of reference, light is always propagated in empty space with a definite velocity c that is independent of the state of motion of the emitting body.
A discrete version of the Einstein–Hilbert action is obtained by considering so-called deficit angles of these blocks, a zero deficit angle corresponding to no curvature. This novel idea finds application in approximation methods in numerical relativity and quantum gravity , the latter using a generalisation of Regge calculus.
In general relativity, four-dimensional vectors, or four-vectors, are required. These four dimensions are length, height, width and time. A "point" in this context would be an event, as it has both a location and a time. Similar to vectors, tensors in relativity require four dimensions. One example is the Riemann curvature tensor.