Search results
Results from the WOW.Com Content Network
IBM SPSS Modeler is a data mining and text analytics software application from IBM. It is used to build predictive models and conduct other analytic tasks. It has a visual interface which allows users to leverage statistical and data mining algorithms without programming.
The original SPSS manual (Nie, Bent & Hull, 1970) [11] has been described as one of "sociology's most influential books" for allowing ordinary researchers to do their own statistical analysis. [12] In addition to statistical analysis, data management (case selection, file reshaping and creating derived data) and data documentation (a metadata ...
The generalized additive model for location, scale and shape (GAMLSS) is a semiparametric regression model in which a parametric statistical distribution is assumed for the response (target) variable but the parameters of this distribution can vary according to explanatory variables.
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
Partial least squares (PLS) regression is a statistical method that bears some relation to principal components regression and is a reduced rank regression; [1] instead of finding hyperplanes of maximum variance between the response and independent variables, it finds a linear regression model by projecting the predicted variables and the observable variables to a new space of maximum ...
In statistics, particularly in hypothesis testing, the Hotelling's T-squared distribution (T 2), proposed by Harold Hotelling, [1] is a multivariate probability distribution that is tightly related to the F-distribution and is most notable for arising as the distribution of a set of sample statistics that are natural generalizations of the statistics underlying the Student's t-distribution.
Ward's minimum variance method can be defined and implemented recursively by a Lance–Williams algorithm. The Lance–Williams algorithms are an infinite family of agglomerative hierarchical clustering algorithms which are represented by a recursive formula for updating cluster distances at each step (each time a pair of clusters is merged).
Correspondence analysis (CA) is a multivariate statistical technique proposed [1] by Herman Otto Hartley (Hirschfeld) [2] and later developed by Jean-Paul Benzécri. [3] It is conceptually similar to principal component analysis, but applies to categorical rather than continuous data.