Search results
Results from the WOW.Com Content Network
function gcd(a, b) while b ≠ 0 t := b b := a mod b a := t return a At the beginning of the k th iteration, the variable b holds the latest remainder r k−1, whereas the variable a holds its predecessor, r k−2. The step b := a mod b is equivalent to the above recursion formula r k ≡ r k−2 mod r k−1.
gcd(a, b) is closely related to the least common multiple lcm(a, b): we have gcd(a, b)⋅lcm(a, b) = | a⋅b |. This formula is often used to compute least common multiples: one first computes the GCD with Euclid's algorithm and then divides the product of the given numbers by their GCD. The following versions of distributivity hold true:
Visualisation of using the binary GCD algorithm to find the greatest common divisor (GCD) of 36 and 24. Thus, the GCD is 2 2 × 3 = 12.. The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1] [2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers.
If a formula involving integer variables, gcd, lcm, ≤ and ≥ is true, then the formula obtained by switching gcd with lcm and switching ≥ with ≤ is also true. (Remember ≤ is defined as divides). The following pairs of dual formulas are special cases of general lattice-theoretic identities.
In arithmetic and computer programming, the extended Euclidean algorithm is an extension to the Euclidean algorithm, and computes, in addition to the greatest common divisor (gcd) of integers a and b, also the coefficients of Bézout's identity, which are integers x and y such that + = (,).
Therefore, equalities like d = gcd(p, q) or gcd(p, q) = gcd(r, s) are common abuses of notation which should be read "d is a GCD of p and q" and "p and q have the same set of GCDs as r and s". In particular, gcd(p, q) = 1 means that the invertible constants are the only common divisors.
In number theory, the gcd-sum function, [1] also called Pillai's arithmetical function, [1] is defined for every by = = (,) or equivalently ...
In particular, is also a Bézout domain, so it is a gcd domain and the gcd of any two elements satisfies a Bézout's identity. To put a matrix into Smith normal form, one can repeatedly apply the following, where t {\displaystyle t} loops from 1 to m {\displaystyle m} .