Search results
Results from the WOW.Com Content Network
A typical book can be printed with 10 6 zeros (around 400 pages with 50 lines per page and 50 zeros per line). Therefore, it requires 10 94 such books to print all the zeros of a googolplex (that is, printing a googol zeros). [4] If each book had a mass of 100 grams, all of them would have a total mass of 10 93 kilograms.
This is a description of what would happen if one tried to write a googolplex, but different people get tired at different times and it would never do to have Carnera a better mathematician than Dr. Einstein, simply because he had more endurance. The googolplex is, then, a specific finite number, equal to 1 with a googol zeros after it.
A googol is the large number 10 100 or ten to the power of one hundred. In decimal notation, it is written as the digit 1 followed by one hundred zeros: 10, 000, 000 ...
Mathematics:, a number in the googol family called a googolplexplex, googolplexian, or googolduplex. 1 followed by a googolplex zeros, or 10 googolplex Cosmology: The uppermost estimate to the size of the entire universe is approximately 10 10 10 122 {\displaystyle 10^{10^{10^{122}}}} times that of the observable universe .
The number of cells in the human body (estimated at 3.72 × 10 13), or 37.2 trillion/37.2 T [3] The number of bits on a computer hard disk (as of 2024, typically about 10 13, 1–2 TB), or 10 trillion/10T; The number of neuronal connections in the human brain (estimated at 10 14), or 100 trillion/100 T
Negative numbers: Real numbers that are less than zero. Because zero itself has no sign, neither the positive numbers nor the negative numbers include zero. When zero is a possibility, the following terms are often used: Non-negative numbers: Real numbers that are greater than or equal to zero. Thus a non-negative number is either zero or positive.
10 googol: googolplex (1 followed by a googol of zeros) 10 googolplex: googolplexplex (1 followed by a googolplex of zeros) Combinations of numbers in most sports scores are read as in the following examples: 1–0 British English: one-nil; American English: one-nothing, one-zip, or one-zero
This is the minimum number of characters needed to encode a 32 bit number into 5 printable characters in a process similar to MIME-64 encoding, since 85 5 is only slightly bigger than 2 32. Such method is 6.7% more efficient than MIME-64 which encodes a 24 bit number into 4 printable characters. 89