enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dissipation - Wikipedia

    en.wikipedia.org/wiki/Dissipation

    In thermodynamics, dissipation is the result of an irreversible process that affects a thermodynamic system.In a dissipative process, energy (internal, bulk flow kinetic, or system potential) transforms from an initial form to a final form, where the capacity of the final form to do thermodynamic work is less than that of the initial form.

  3. Entropy (energy dispersal) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(energy_dispersal)

    The term "entropy" has been in use from early in the history of classical thermodynamics, and with the development of statistical thermodynamics and quantum theory, entropy changes have been described in terms of the mixing or "spreading" of the total energy of each constituent of a system over its particular quantized energy levels.

  4. Jablonski diagram - Wikipedia

    en.wikipedia.org/wiki/Jablonski_diagram

    This process involves the dissipation of energy from the molecule to its surroundings, and thus it cannot occur for isolated molecules. A second type of nonradiative transition is internal conversion (IC), which occurs when a vibrational state of an electronically excited state can couple to a vibrational state of a lower electronic state. The ...

  5. Extremal principles in non-equilibrium thermodynamics

    en.wikipedia.org/wiki/Extremal_principles_in_non...

    Energy dissipation and entropy production extremal principles are ideas developed within non-equilibrium thermodynamics that attempt to predict the likely steady states and dynamical structures that a physical system might show. The search for extremum principles for non-equilibrium thermodynamics follows their successful use in other branches ...

  6. Principle of minimum energy - Wikipedia

    en.wikipedia.org/wiki/Principle_of_minimum_energy

    The Helmholtz free energy is a useful quantity when studying thermodynamic transformations in which the temperature is held constant. Although the reduction in the number of variables is a useful simplification, the main advantage comes from the fact that the Helmholtz free energy is minimized at equilibrium with respect to any unconstrained ...

  7. Helmholtz free energy - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_free_energy

    The Helmholtz free energy is defined as [3], where . F is the Helmholtz free energy (sometimes also called A, particularly in the field of chemistry) (SI: joules, CGS: ergs),; U is the internal energy of the system (SI: joules, CGS: ergs),

  8. Turbulence kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Turbulence_kinetic_energy

    Turbulence kinetic energy is then transferred down the turbulence energy cascade, and is dissipated by viscous forces at the Kolmogorov scale. This process of production, transport and dissipation can be expressed as: D k D t + ∇ ⋅ T ′ = P − ε , {\displaystyle {\frac {Dk}{Dt}}+\nabla \cdot T'=P-\varepsilon ,} where: [ 1 ]

  9. Thermodynamic free energy - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_free_energy

    Historically, the term 'free energy' has been used for either quantity. In physics, free energy most often refers to the Helmholtz free energy, denoted by A (or F), while in chemistry, free energy most often refers to the Gibbs free energy. The values of the two free energies are usually quite similar and the intended free energy function is ...