enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Elastic properties of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Elastic_properties_of_the...

    Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength .

  3. Young's modulus - Wikipedia

    en.wikipedia.org/wiki/Young's_modulus

    Young's modulus is defined as the ratio of the stress (force per unit area) applied to the object and the resulting axial strain (displacement or deformation) in the linear elastic region of the material. Although Young's modulus is named after the 19th-century British scientist Thomas Young, the concept was developed in 1727 by Leonhard Euler.

  4. Elastic modulus - Wikipedia

    en.wikipedia.org/wiki/Elastic_modulus

    Young's modulus (E) - apply small, incremental changes in the lattice parameter along a specific axis and compute the corresponding stress response using DFT. Young’s modulus is then calculated as E=σ/ϵ, where σ is the stress and ϵ is the strain. [4] Initial structure: Start with a relaxed structure of the material.

  5. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    The modulus of elasticity can be used to determine the stress–strain relationship in the linear-elastic portion of the stress–strain curve. The linear-elastic region is either below the yield point, or if a yield point is not easily identified on the stress–strain plot it is defined to be between 0 and 0.2% strain, and is defined as the ...

  6. Specific modulus - Wikipedia

    en.wikipedia.org/wiki/Specific_modulus

    Young's modulus Density (g/cm 3) Young's modulus per density; specific stiffness (10 6 m 2 s −2) Young's modulus per density squared (10 3 m 5 kg −1 s −2) Young's modulus per density cubed (m 8 kg −2 s −2) Reference Latex foam, low density, 10% compression [4] 5.9 × 10 ^ −7: 0.06: 9.83 × 10 ^ −6: 0.000164: 0.00273: Reversible ...

  7. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_curve

    [1]: 58 For example, low carbon steel generally exhibits a very linear stress–strain relationship up to a well defined yield point. The linear portion of the curve is the elastic region, and the slope of this region is the modulus of elasticity or Young's modulus. Plastic flow initiates at the upper yield point and continues at the lower ...

  8. Shear modulus - Wikipedia

    en.wikipedia.org/wiki/Shear_modulus

    The shear modulus is one of several quantities for measuring the stiffness of materials. All of them arise in the generalized Hooke's law: . Young's modulus E describes the material's strain response to uniaxial stress in the direction of this stress (like pulling on the ends of a wire or putting a weight on top of a column, with the wire getting longer and the column losing height),

  9. Structural material - Wikipedia

    en.wikipedia.org/wiki/Structural_material

    Steel is equally strong in tension and compression. Steel is weak in fires, and must be protected in most buildings. Despite its high strength to weight ratio, steel buildings have as much thermal mass as similar concrete buildings. The elastic modulus of steel is approximately 205 GPa. Steel is very prone to corrosion .