enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Formulas for generating Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Formulas_for_generating...

    There is a method to construct all Pythagorean triples that contain a given positive integer x as one of the legs of the right-angled triangle associated with the triple. It means finding all right triangles whose sides have integer measures, with one leg predetermined as a given cathetus. [13] The formulas read as follows.

  3. Tree of primitive Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Tree_of_primitive...

    This can be seen by applying in turn each of the unimodular inverse matrices A −1, B −1, and C −1 to an arbitrary primitive Pythagorean triple (d, e, f), noting that by the above reasoning primitivity and the Pythagorean property are retained, and noting that for any triple larger than (3, 4, 5) exactly one of the inverse transition ...

  4. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    The Pythagorean triples thus lie on curves given by = | / |, that is, parabolas reflected at the a-axis, and the corresponding curves with a and b interchanged. If a is varied for a given n (i.e. on a given parabola), integer values of b occur relatively frequently if n is a square or a small multiple of a square. If several such values happen ...

  5. Triple product - Wikipedia

    en.wikipedia.org/wiki/Triple_product

    The simple product of two triple products (or the square of a triple product), may be expanded in terms of dot products: [1] (()) (()) = [] This restates in vector notation that the product of the determinants of two 3×3 matrices equals the determinant of their matrix product.

  6. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix, known as the matrix product, has the number of rows of the first and the number of columns of the second matrix. The product of matrices A and B is denoted as AB. [1]

  7. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    A number of matrix-related notions is about properties of products or inverses of the given matrix. The matrix product of a m-by-n matrix A and a n-by-k matrix B is the m-by-k matrix C given by (), = =,,. [2] This matrix product is denoted AB. Unlike the product of numbers, matrix products are not commutative, that is to say AB need not be ...

  8. Hadamard product (matrices) - Wikipedia

    en.wikipedia.org/wiki/Hadamard_product_(matrices)

    The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.

  9. Summation by parts - Wikipedia

    en.wikipedia.org/wiki/Summation_by_parts

    In mathematics, summation by parts transforms the summation of products of sequences into other summations, often simplifying the computation or (especially) estimation of certain types of sums. It is also called Abel's lemma or Abel transformation , named after Niels Henrik Abel who introduced it in 1826.